

1 Long term effects of treatment and management approaches for impinging dorsal spinous
2 processes in ridden horses

3

4 **Treatment and management of IDSP**

5

6 Rebecca Brassington*, Rachel Hardy, Tracy Bye¹

7

8 *University Centre Bishop Burton, York Rd, Bishop Burton, Beverley,
9 East Yorkshire, HU17 8QG. UK*

10

11

12 * Corresponding author- rebecca.brassington@bishopburton.ac.uk

¹ Tracy Bye is now based at Royal Agricultural University, Tetbury Road, Cirencester, Gloucestershire, GL7 6JS.
UK

13 **Summary**

14 **Background:** Impinging dorsal spinous processes (IDSP) are a common cause of pain and loss
15 of performance in sports horses, with a range of surgical and conservative treatments available.

16 **Objectives:** Identify relationships between treatment choice and the likelihood of returning to
17 previous level of performance for horses diagnosed with IDSP.

18 **Study design:** Cross sectional survey of owners with horses diagnosed with IDSP.

19 **Methods:** A 14-question online survey was circulated via social media. Data were collected
20 for 260 horses and analysed for associations between treatment choice and return to pre-
21 diagnosis level of performance.

22 **Results:** Just under 50% of horses in the sample returned to their previous level of performance
23 post-treatment. Horses that were treated surgically had twice the odds of returning to their
24 previous level than those that were not, and horses that underwent an exercise rehabilitation
25 programme had 10 times the odds of returning to level.

26 **Main limitations:** As this was an owner survey, self-selection bias and recall bias could have
27 influenced the findings.

28 **Conclusions:** If the aim is for the horse to return to a competitive career post-treatment, the
29 most appropriate surgical intervention appears to be the best approach, and an exercise
30 rehabilitation plan may have benefit.

31

32 **Keywords:** Horse; Kissing spines; Surgery; Physiotherapy; Rehabilitation

33

34

35 **Clinical Relevance:**

36 • Horses that were treated surgically for IDSP had higher odds of returning to their
37 previous level of performance than those receiving only non-surgical treatments
38 • Correct exercise prescription has potential to improve the outcome for ridden horses
39 with IDSP and warrants further research
40 • Additional musculoskeletal pathologies were reported in 61% of horses with IDSP and
41 were associated with reduced odds of returning to previous performance level

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56 **Introduction**

57 The equine vertebral column provides a crucial foundation for structural support, movement,
58 and athletic performance (Stubbs *et al.*, 2006) however back pain is a commonly reported
59 concern, with impinging dorsal spinal processes (IDSP) as the most common cause (Jeffcott,
60 1979; Jacklin *et al.*, 2014; Henson, 2017). Interspinous spaces (ISS) below 4 mm are
61 considered clinically significant (Erichsen *et al.*, 2004; Sinding and Berg, 2010; Coomer *et al.*,
62 2012) and are frequently identified within the thoracic and occasionally the lumbar region
63 (Dyson and Ross, 2011; Zimmerman, 2012; Clayton and Stubbs, 2016). The abnormality
64 ranges from close summits to over-riding processes with regions of active remodelling and
65 bone fusion (Zimmerman *et al.*, 2011; Sinding and Berg, 2010).

66 Numerous treatment and management options exist for IDSP, with conservative management
67 methods primarily selected after initial diagnosis to reduce localised pain and develop epaxial
68 musculature (Stubbs, 2011). Corticosteroid injections or non-steroidal anti-inflammatory drug
69 (NSAID) administration aim to reduce inflammation in ISS to support implementing a
70 rehabilitation programme (Turner, 2011). Earlier surgical treatment included resection of the
71 spinal processes, with a reported 72% of horses returning to full work post-surgery (Walmsley
72 *et al.*, 2002), however the required general anaesthesia supported standing surgery options with
73 Brink (2014) reporting subtotal ostectomy had 86% of horses returning to work. More recently,
74 a minimally invasive technique, interspinous ligament desmotomy (ISLD), designed to reduce
75 stimulation associated with sensory nerves, has reported alleviation of back pain in over 90%
76 of cases (Prisk and Garcia-Lopez, 2019; Coomer *et al.*, 2012) and a shortened return to work
77 time of six weeks (Coomer *et al.*, 2012).

78 Previous studies have included follow up of horses treated with specific techniques within one
79 clinic, but to date there has been no investigation of the long-term impact of treatment selection

80 on performance across a range of treatment approaches. This study aimed to investigate the
81 relationship between treatment choices and long-term performance of ridden horses diagnosed
82 with IDSP.

83

84 **Materials and methods**

85 A cross-sectional study was undertaken between December 2019 and February 2020, using a
86 convenience sampling method to survey owners of horses diagnosed with IDSP. A 14-question
87 online survey (supplementary material) was distributed via the social media platform
88 Facebook, into two groups, 'Horses with Kissing Spine' and 'Horses with Arthritis and Related
89 Conditions' which at the time of circulation had 7,024 and 2,125 members, respectively.
90 Ethical approval for the project was granted by Bishop Burton College Ethics and Welfare
91 Committee. All participants remained anonymous and all data were stored securely and in
92 accordance with the General Data Protection Regulation (2016) and Data Protection Act
93 (2018).

94 Data collected on the pathology included number of affected vertebrae, regions(s) of the spine
95 affected, and if the horse had been diagnosed with any additional musculoskeletal pathologies.
96 Treatments used were selected from a list. Multiple selections were allowed and an 'other'
97 option allowed owners to write in additional treatment types. Where several respondents wrote
98 in similar treatments, new categories were created. Whether the horse returned to its pre-
99 diagnosis level of performance after receiving treatment was a binary (Yes/No) question.
100 Information on the horses' age at diagnosis and breed were also ascertained to determine the
101 cross-section of horses being represented.

102 Survey data were coded into IBM SPSS v28 for analysis. Binary logistic regression was used
103 to assess relationships between reported pathology and treatment selection, between pathology

104 and whether the horse returned to its previous level of performance, and between treatment
105 selection and return to level. Alpha was set at 0.05.

106 **Results**

107 A total of 265 complete questionnaires were received, a response rate of 2.9%. However, some
108 of the distribution list will likely be duplicates (members of both groups), so true response rate
109 may be higher. Of these, five owners indicated that their horses were diagnosed with muscular
110 or arthritic changes to the spine, but not IDSP, and so were not included in the sample, leaving
111 260 responses for analysis.

112 Owners reported the age at which their horse was diagnosed with IDSP, with 41% of the sample
113 being diagnosed between 7-10 years of age, and 93% between 3-14 years of age.
114 Thoroughbreds and Warmbloods made up the largest proportion of the sample, 35% and 27.3%
115 respectively, and other sports horses including crossbreeds made up a further 16.2%. The
116 remaining 21.5% was made up of a range of breeds including cobs, British native breeds,
117 Arabians, and their crosses.

118 The median number of affected vertebrae was 4 ± 2 (\pm IQR). It was reported that 8.1% of the
119 sample had pathology in the cranial thoracic region (T1-T9), 58.8% in the caudal thoracic (T10-
120 T18), 7.3% in the lumbar, and 25.8% had pathologies in more than one of the defined regions.
121 Almost fifty percent (n=129) of the horses returned to their previous level of performance after
122 receiving treatment.

123 The range of treatments reported can be seen in Figure 1. The majority of categories used were
124 pre-defined, but new categories were added based on write-in answers for manual therapy
125 (other than physiotherapy e.g. chiropractic, osteopathy), exercise rehabilitation (exercise plan,
126 which may be developed by a physiotherapist, veterinarian, or other professional), and
127 NSAIDs, which were not specified on the original list of treatments. It was reported that 35.4%

128 of the sample received one type of treatment, 36.2% received two categories of treatment,
129 20.8% received three types of treatment, and 4.6% received four or more different treatments.
130 Owners reported that 8 horses (3.1%) received none of the defined treatment types. Several
131 owners used the 'other' option on the survey to write in alternative treatments, but numbers of
132 some of these write-in treatments were too small to form groups in the analysis.

133 [Figure 1 near here]

134 At least one additional pathology was reported in 60.8% of horses in the sample. These
135 secondary diagnoses included tarsal pathologies (36.2% of all horses in sample), sacroiliac pain
136 (29.3%), suspensory desmitis/desmopathy (12.3%), stifle pathologies (6.5%), cervical
137 vertebrae pathologies (3.1%), arthritis in thoracic vertebrae (1.9%), navicular disease (1.2%),
138 fetlock arthritis (1.2%), coffin joint arthritis (0.8%) and lumbar spondylosis (0.8%).

139

140 *Relationship between pathology and treatment choices*

141 The variables of number of affected vertebrae, region(s) of the spine affected, and whether the
142 horse had an additional pathology were analysed for association with the three most common
143 treatment types, corticosteroids, physiotherapy, and surgical intervention.

144 Horses with more affected vertebrae had significantly lower odds of being treated with
145 corticosteroids (OR= 0.82, CI:0.71-0.94, P=0.006), but there was no association between area
146 of the spine affected and corticosteroid use (P=0.093). Horses with another musculoskeletal
147 condition had significantly greater odds of being treated with corticosteroids (OR=1.87 CI:
148 1.11-3.15, P=0.019). There was no association between number of affected vertebrae
149 (P=0.414) or area of the spine affected (P=0.395) and the inclusion of physiotherapy within the
150 treatment strategy, but horses with another musculoskeletal condition had greater odds of
151 receiving physiotherapy than those without (OR=1.75, CI:1.02-2.92, P=0.032).

152 Horses with more affected vertebrae had greater odds of being treated surgically (OR= 1.16
153 CI: 1.01-1.33, P=0.038). Area of the spine affected was also significantly associated with
154 selection of surgery (P=0.037). Horses with pathology in the caudal thoracic region (T10-T18)
155 had five times the odds of undergoing surgery when compared to those with pathology in the
156 lumbar region only (OR= 5.25, CI: 1.45-18.87, P=0.011). There was no association between
157 the presence of an additional condition and the inclusion of surgery in the treatment plan
158 (P=0.795).

159

160 [Figure 2 near here]

161

162 *Relationship between pathology and return to work*

163 There was no significant association between affected region of the spine (P=0.658) or the
164 number of affected vertebrae (P=0.847) and the odds of the horse returning to its previous level
165 of work. Horses with additional pathologies had significantly lower odds of returning to their
166 previous level than those without (OR=0.5 CI: 0.3-0.9, P= 0.013), with only 43.7% of horses
167 who had an additional pathology returning to their previous level, compared to 58.8% of horses
168 with no additional pathology.

169

170 *Relationship between treatment choices and return to work*

171 As the majority of horses were reported as receiving multiple treatment types, all treatments
172 were included as covariates within the regression model to adjust for effects of treatment
173 combinations. Horses treated surgically had significantly greater odds of returning to their
174 previous level of work than those that were not, and horses that underwent a tailored exercise

175 rehabilitation plan also had significantly greater odds of returning to their previous level of
176 work. None of the other treatment types had a significant association with return to work. The
177 full analysis can be seen in Table 1.

178

179 [Table 1 near here]

180

181 It was common for treatment approaches to be used in combination with one another. Table 2
182 shows the number of horses which were reported as receiving each of the possible
183 combinations of the three most common treatments, surgery, corticosteroids, and
184 physiotherapy, and the proportion of these groups which successfully returned to the previous
185 level of work. These data align with the statistical analysis, in that treatment approaches which
186 included surgery showed a greater return to work rate on average.

187

188 [Table 2 near here]

189

190 **Discussion**

191 This cross-sectional study aimed to assess the impact of treatment choices on the long-term
192 prognosis for ridden horses with IDSP. The study used an owner survey to follow up on horses
193 that had been diagnosed and treated at any point in their time with the current owner. The
194 results are encouraging, with 49.6% of horses returning to their previous level of performance
195 after treatment.

196

197 *Pathology and treatment choice*

198 Horses with higher numbers of affected vertebrae, and particularly those with pathology in the
199 area under the saddle had greater odds of being treated surgically, whereas horses with smaller
200 numbers of affected vertebrae had greater odds of being treated with corticosteroids, which
201 agrees with Coomer *et al.* (2012) and may indicate a preference to treat these horses more
202 conservatively, at least in the first instance.

203 Horses that were also diagnosed with another musculoskeletal pathology were treated more
204 readily with corticosteroids and had a higher rate of referral to physiotherapy. On first
205 impressions this may appear as a tendency to treat these horses more conservatively, however
206 there was no significant difference in the proportion of horses that were treated surgically
207 between the group with additional pathology and the group without. It is likely that these
208 horses were simply provided with more support, in the form of combination treatment
209 approaches, to try and overcome multiple musculoskeletal pathologies. Recent studies have
210 investigated clinical reasoning within physiotherapists involved in rehabilitating horses after
211 ISLD (Sayers and Tabor, 2020), but aside from justification of case selection within controlled
212 trials (Coomer *et al.*, 2012) there have been no widespread studies of veterinarians' clinical
213 reasoning in primary treatment selection for IDSP. This could be a valuable area for future
214 research.

215

216 *Pathology and return to work*

217 The area of the spine affected or number of affected vertebrae did not appear to have a
218 significant impact on this return to work. This agrees with Walmsley *et al.* (2002) who found
219 no association between number of spinous processes resected and return to work in horses
220 treated surgically. In the current study, horses that had additional pathologies alongside IDSP

221 had lower odds of returning to their previous level than those that did not, so the potential
222 confounding effect of this needs to be considered when interpreting the findings.

223

224 *Treatment choice and return to work*

225 Two of the most common treatments were corticosteroids and surgery, which is in agreement
226 with previous studies (Coomer *et al.*, 2012; Findley and Singer, 2016; Riccio *et al.*, 2018). As
227 this study was based on an owner survey, specific surgical interventions could not be identified,
228 therefore all surgeries were analysed as one group. Horses that underwent surgery had twice
229 the odds of successfully returning to their previous level than those that did not have surgery.
230 This is consistent with previous studies demonstrating a return to work for the majority of
231 horses post-surgery (Walmsley *et al.*, 2002; Coomer *et al.*, 2012; Brink, 2014; Prisk and Garcia-
232 Lopez, 2019).

233 Corticosteroids are recommended as a treatment option for IDSP (Byron, 2007; Findley and
234 Singer, 2016), and are widely used (Riccio *et al.*, 2018), but did not show a significant
235 association with return to work in this study. Intra-articular use of corticosteroids is well studied
236 and well supported (Boorman *et al.*, 2022; McIlwraith, 2010), but the efficacy of this treatment
237 option for IDSP has not been as thoroughly investigated. Pettersson *et al.* (1987) compared
238 surgical and conservative approaches and showed a 72% success rate with surgery compared
239 to 23% for conservative management. However, the details on what constituted conservative
240 management were minimal and included rest, massage, pain relieving drugs and exercise, so
241 the sole effects of corticosteroids cannot be isolated. Coomer *et al.* (2012) compared the long-
242 term effects of surgical treatment (ISLD) and corticosteroids, and found that back pain
243 reoccurred in 56% of the corticosteroid group within the follow up period, and none of the
244 surgical group. The current study agrees with these previous findings and indicates that surgical

245 interventions offer a more promising long-term prognosis for the ridden horse than more
246 conservative treatment plans. This is especially encouraging considering that these horses had
247 greater odds of having pathology in the saddle area.

248 Physiotherapy was one of the most used interventions but did not show any significant
249 association with return to previous level of performance. Both corticosteroids and
250 physiotherapy were used in a higher proportion of those horses that had additional
251 musculoskeletal pathologies, and these horses had significantly lower odds of a promising
252 long-term outcome, which could skew the results for these treatments. Ten different additional
253 pathologies were identified in this study and are all likely to influence the treatment approach
254 in different ways. Future studies would need to explore treatment decisions and outcomes for
255 a greater number of horses diagnosed with IDSP and concurrent musculoskeletal pathologies
256 to provide the statistical power to assess the influence of common comorbidities.

257

258 Within the analysis physiotherapy was a pre-existing category, but one of the new categories
259 created from the ‘write-in’ answers was exercise rehabilitation. These were horses where the
260 owners described a tailored exercise plan. This group had 10 times the odds of returning to
261 their previous level of work than those horses that were not reported as having a modified
262 exercise programme. Ridden work is a contributing factor to IDSP development and associated
263 pain (Clayton and Stubbs, 2016) and modified exercise is considered an essential component
264 of IDSP treatment (Coomer *et al.*, 2012). Multiple meta-analyses of human research identify
265 exercise therapy as the number one primary preventative measure for back pain (Shiri *et al.*,
266 2018; Steffens *et al.*, 2016; de Campos *et al.*, 2021) and one of the most frequently
267 recommended strategies for management of existing chronic back pain (Qaseem *et al.*, 2017;
268 Oliveira *et al.*, 2018; Stochkendahl *et al.*, 2018). Turner (2011) found that a combination

269 treatment of mesotherapy, ESWT, and exercise was more effective for treating IDSP than
270 mesotherapy only, or corticosteroid treatment only. Exercise therapy has long been discussed
271 for equine back conditions (Bromiley, 1999) and provided there are no contraindications, it is
272 reasonable to promote tailored exercise programmes for horses with IDSP. Current thinking is
273 that this should focus on strengthening the core musculature to support the spine more
274 effectively (Clayton, 2016; Findley and Singer, 2016). This can include work without the
275 weight of a rider (de Cocq *et al.*, 2004), work over raised poles (Oliveira *et al.*, 2015; Brown *et*
276 *al.*, 2019), and treadmill work, including water treadmill (Nankervis *et al.* 2017). There are
277 very few randomised controlled trials within equine exercise rehabilitation (Atalaia, 2021); this
278 is an area that would benefit from further research to provide definitive recommendations for
279 IDSP rehabilitation.

280

281 Physiotherapy can encompass a range of different approaches, including electrotherapies,
282 thermotherapy, manual therapy, and exercise prescription (McGowan *et al.*, 2007). As this was
283 an owner survey, full details on interventions used could not be obtained, so all physiotherapy
284 treatments were analysed as one group. It could be that some of the horses included in the
285 physiotherapy category should have also been in the ‘exercise’ group, but owners may not have
286 seen it necessary to make this distinction. Future studies could aim to separate different
287 physiotherapy treatment modalities to gain more insight into specific approaches and treatment
288 combinations which may be of greater benefit.

289

290 **Limitations**

291 The major limitation of this study is that it was an owner survey, and as such relied on horse
292 owners volunteering for the study and being able to provide accurate details of their horse’s

293 condition. Gathering information from owners gives the advantage of allowing inclusion of a
294 greater range of treatment and rehabilitation approaches and over an extended time frame
295 compared to clinical studies. However, asking horse owners to provide detail of treatments
296 which may have taken place several years prior increases the risk of recall bias (Fenner *et al.*,
297 2020) and there were several areas where more specific details would benefit the analysis, such
298 as grading of IDSP severity, surgical approach used, or therapeutic modalities included in
299 rehabilitation. The survey was distributed via Facebook, meaning that participants were free to
300 self-select whether they took part after seeing the survey being posted. This self-selection can
301 introduce bias, as survey respondents may be more motivated than average to engage with this
302 particular research topic (Bethlehem, 2010) and the vast majority of Facebook users are under
303 45 years of age (Statista, 2024) which may not be representative of the wider horse owning
304 population. Future studies could use a probability sampling technique and combine both
305 veterinary records and owner follow up to give a more comprehensive picture.

306

307 **Conclusions**

308 Surgical options were associated with a better long-term prognosis for horses with IDSP than
309 non-surgical treatment plans. If the aim is for the horse to return to a competitive career post-
310 treatment, the most appropriate surgical intervention appears to be the best approach and
311 exercise rehabilitation plans could be of value. The industry may benefit from greater evidence
312 of the particular exercises effective for aiding in spinal pathology rehabilitation, along with
313 exploration of the effect of specific comorbidities on treatment selection and outcomes, to
314 further inform the management of horses with IDSP.

315

316 **References**

317 Atalaia, Tiago, José Prazeres, João Abrantes, and Hilary M. Clayton. 2021. Equine
318 Rehabilitation: A Scoping Review of the Literature. *Animals* 11, no. 6: 1508.

319 Bethlehem, J., 2010. Selection bias in web surveys. *International statistical review*, 78(2),
320 pp.161-188.

321 Boorman, S., McMaster, M.A., Groover, E. and Caldwell, F., 2022. Review of glucocorticoid
322 therapy in horses: Intra-articular corticosteroids. *Equine Vet Educ.*

323 Brink, P., 2014. Subtotal osteectomy of impinging dorsal spinous processes in 23 standing
324 horses. *Vet Surg*, 43(1), pp.95-98.

325 Bromiley, M.W., 1999. Physical therapy for the equine back. *Vet Clin North Am Equine
326 Pract*, 15(1), pp.223-246.

327 Brown, S., Tabor, G. and Williams, J., 2019. The effect of trot pole exercise on rectus
328 abdominus activity in the horse. *J Vet Behav*, 29, p.155.

329 Byron, C.R., 2007. Glucocorticoids in the Management of Equine Back Pain. *Compendium
330 Equine*, pp.260-265.

331 de Campos, T.F., Maher, C.G., Fuller, J.T., Steffens, D., Attwell, S. and Hancock, M.J., 2021.
332 Prevention strategies to reduce future impact of low back pain: a systematic review and meta-
333 analysis. *Br J Sports Med*, 55(9), pp.468-476.

334 Clayton HM. Core Training and Rehabilitation in Horses. *Vet Clin North Am Equine Pract*.
335 2016 Apr;32(1):49-71. doi: 10.1016/j.cveq.2015.12.009. PMID: 27012507.

336 Clayton, H.M. and Stubbs, N.C., 2016. Enthesophytosis and impingement of the dorsal
337 spinous processes in the equine thoracolumbar spine. *J Equine Vet Sci*, 47, pp.9-15.

338 de Cocq, P.D., Van Weeren, P.R. and Back, W., 2004. Effects of girth, saddle and weight on
339 movements of the horse. *Equine Vet J*, 36(8), pp.758-763.

340 Coomer, R.P., McKane, S.A., Smith, N. and Vandeweerd, J.M.E., 2012. A controlled study
341 evaluating a novel surgical treatment for kissing spines in standing sedated horses. *Vet Surg*,
342 41(7), pp.890-897.

343 Dyson, S. and Ross, M., 2011. Diagnosis and Management of Lameness in the Horse. St.
344 Louis, Mo: Elsevier/ Saunders.

345 Erichsen, C., Eksell, P., Holm, K/R., Lord, P. and Johnston, C., 2004. Relationship between
346 scintigraphic and radiographic evaluations of spinous processes in the thoracolumbar spine in
347 riding horses without clinical signs of back problems. *Equine Vet J*, 36(6). Pp. 458-465.

348 Fenner, K., Hyde, M., Crean, A. and McGreevy, P., 2020. Identifying sources of potential
349 bias when using online survey data to explore horse training, management, and behaviour: A
350 systematic literature review. *Veterinary Sciences*, 7(3), p.140.

351 Findley, J. and Singer, E., 2015. Equine back disorders 1. Clinical presentation, investigation
352 and diagnosis. *In Practice*, 37(9), pp.456-467.

353 Findley, J. and Singer, E., 2016. Equine back disorders 2. Treatment options. *In Practice*,
354 38(1), pp.33-38

355 Fiske-Jackson, A., 2018. Diagnosis and management of impinging spinous processes. *UK-
356 Vet Equine*, 2(1), pp.15-21.

357 Henson, F.M.D., 2017. Pathology of the thoracic dorsal spinous processes. *Equine Vet Educ*,
358 31(1), pp.34-36.

359 Jacklin, B., Minshall, G. and Wright, I., 2014. A new technique for subtotal (cranial wedge)
360 osteectomy in the treatment of impinging/ overriding spinous processes: Description of
361 technique and outcome of 25 cases. *Equine Vet J* 46(3), pp. 339-344.

362 Jeffcott, L.B., 1979. Radiographic features of the normal equine thoracolumbar spine. *Vet
363 Radiology*, 20(3-6), pp.140-147.

364 McGowan, C.M., Stubbs, N.C. and Jull, G.A., 2007. Equine physiotherapy: a comparative
365 view of the science underlying the profession. *Equine Vet J*, 39(1), pp.90-94.

366 McIlwraith, C.W., 2010. The use of intra-articular corticosteroids in the horse: what is known
367 on a scientific basis?. *Equine Vet J*, 42(6), pp.563-571.

368 Nankervis, K.J., Launder, E.J. and Murray, R.C., 2017. The use of treadmills within the
369 rehabilitation of horses. *J Equine Vet Sci*, 53, pp.108-115.

370 de Oliveira, K., Soutello, R.V., da Fonseca, R., Costa, C., Paulo, R.D.L., Fachiolli, D.F. and
371 Clayton, H.M., 2015. Gymnastic training and dynamic mobilization exercises improve stride
372 quality and increase epaxial muscle size in therapy horses. *J Equine Vet Sci*, 35(11-12),
373 pp.888-893.

374 Oliveira, C.B., Maher, C.G., Pinto, R.Z., Traeger, A.C., Lin, C.W.C., Chenot, J.F., van
375 Tulder, M. and Koes, B.W., 2018. Clinical practice guidelines for the management of non-
376 specific low back pain in primary care: an updated overview. *Eur Spine J*, 27, pp.2791-2803.

377 Pettersson, H., Strömberg, B. and Myrin, I., 1987. Das thorkolumbale, interspinale Syndrom
378 (TLI) des Reitpferdes-Retriospektiver Vergleich konservativ und chirurgisch behandelter
379 Fälle. *Pferdeheilkunde*, 3, pp.313-319.

380 Prisk, A.J. and García-López, J.M., 2019. Long-term prognosis for return to athletic function
381 after interspinous ligament desmotomy for treatment of impinging and overriding dorsal
382 spinous processes in horses: 71 cases (2012–2017). *Vet Surg*, 48(7), pp.1278-1286.

383 Qaseem, A., Wilt, T.J., McLean, R.M., Forciea, M.A. and Clinical Guidelines Committee of
384 the American College of Physicians*, 2017. Noninvasive treatments for acute, subacute, and
385 chronic low back pain: a clinical practice guideline from the American College of Physicians.
386 *Ann Intern Med Clin Cases*, 166(7), pp.514-530.

387 Rahman Shiri, David Coggon, Kobra Falah-Hassani, Exercise for the Prevention of Low
388 Back Pain: Systematic Review and Meta-Analysis of Controlled Trials, *Am J Epidemiol*,
389 Volume 187, Issue 5, May 2018, Pages 1093–1101, <https://doi.org/10.1093/aje/kwx337>

390 Riccio, B., Fraschetto, C., Villanueva, J., Cantatore, F. and Bertuglia, A., 2018. Two
391 multicenter surveys on equine back-pain 10 years a part. *Front Vet Sci*, 5, p.195.

392 Sayers, E. and Tabor, G., 2020. An exploration of clinical reasoning and practices used by
393 physiotherapists in the rehabilitation of horses following interspinous ligament desmotomy
394 surgery. *Physiotherapy Theory and Practice*, 38(7), pp.897-907.

395 Shiri, R., Coggon, D. and Falah-Hassani, K., 2018. Exercise for the prevention of low back
396 pain: systematic review and meta-analysis of controlled trials. *Am J Epidemiol*, 187(5),
397 pp.1093-1101.

398 Sinding, M.F. and Berg, L.C., 2010. Distances between thoracic spinous processes in
399 Warmblood foals: a radiographic study. *Equine Vet J*, 42(6), pp.500-503.

400 Statista, 2024. Distribution of Facebook users worldwide as of April 2024, by age and
401 gender. <https://www.statista.com/statistics/376128/facebook-global-user-age-distribution/>.
402 Accessed on 30/06/2024.

403 Steffens, D., Maher, C.G., Pereira, L.S., Stevens, M.L., Oliveira, V.C., Chapple, M.,
404 Teixeira-Salmela, L.F. and Hancock, M.J., 2016. Prevention of low back pain: a systematic
405 review and meta-analysis. *JAMA Intern Med*, 176(2), pp.199-208.

406 Stochkendahl, M.J., Kjaer, P., Hartvigsen, J. *et al.* National Clinical Guidelines for non-
407 surgical treatment of patients with recent onset low back pain or lumbar radiculopathy. *Eur*
408 *Spine J* 27, 60–75 (2018).

409 Stubbs, N.C., Hodges, P.W., Jeffcott, L.B., Cowin, G., Hodgson, D.R. and McGowan, C.M.,
410 2006. Functional anatomy of the caudal thoracolumbar and lumbosacral spine in the horse.
411 *Equine Vet J*, 36, pp.393-399.

412 Stubbs, N.C., 2011. Epaxial musculature, motor control and its relationship with back pain in
413 the horse: objective clinical physical therapy, pathological and imaging studies. In
414 Proceedings of the 57th Annual Convention of the American Association of Equine
415 Practitioners, San Antonio, Texas, USA, 18-22 November, pp. 153-157.

416 Turner, T.A., 2011. Overriding spinous processes (" kissing spines") in horses: diagnosis,
417 treatment, and outcome in 212 cases. In Proceedings of the 57th Annual Convention of the
418 American Association of Equine Practitioners, San Antonio, Texas, USA, 18-22 November
419 pp. 424-430.

420 Walmsley, J.P., Pettersson, H., Winberg, F. and McEvoy, F., 2002. Impingement of the
421 dorsal spinous processes in two hundred and fifteen horses: case selection, surgical technique
422 and results. *Equine Vet J*, 34(1), pp.23-28.

423 Zimmerman, M., Dyson, S. and Murray, R., 2012. Close, impinging and overriding spinous
424 processes in the thoracolumbar spine: the relationship between radiological and scintigraphic
425 findings and clinical signs. *Equine Vet J*, 44(2), pp. 178-184.

426

427 **Table 1**

428 Associations between inclusion of a treatment within the overall treatment strategy and odds
429 of returning to the previous level of performance in a sample of 260 horses with IDSP

430

431 **Table 2**

432 Proportion of horses returning to the previous level of performance for each of the main
433 treatment combinations used in a sample of 260 horses with IDSP

434

435 **Figure 1**

436 The proportion of 260 horses with IDSP that received the different treatment types

437

438 **Figure 2**

439 The proportion of 260 horses with IDSP treated with corticosteroids or surgery, by number of

440 affected vertebral processes