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A B S T R A C T   

Flip-bucket spillways are utilized in hydraulic engineering to diminish the kinetic energy of flowing water by 
redirecting the flow jet into the air. In the downstream stailing basin with low tail-water, sediment particles 
movement results in scour hole formation, posing a threat to spillway stability. The accurate prediction of scour 
hole depth is a crucial area of the present research work. This study endeavors to employ four data-driven models 
(DDMs), namely Support Vector Machine (SVM), Gene Expression Programming (GEP), Multilayer Perceptron 
(MLP), and Multivariate Adaptive Regression Splines (MARS), in combination with five selected empirical 
equations. The objective is to accurately predict scour depth utilizing field-collected data from site number 84. 
Relative scour depth, ds

H1
, was simulated based on the readily extracted parameter i.e. Froude number, Fr =

q̅̅̅̅̅̅
gH3

1

√ . 

The evaluation of model performance was conducted using fundamental metrics, including root mean square 
error (RMSE), coefficient of determination (R2), mean average error (MAE), and the maximum value of the 
developed discrepancy ratio (DDRmax). Among the DDMs, the MARS model demonstrated superior performance 
in both the training and testing phases. In the training phase, it yielded metrics (RMSE = 0.08665, MAE =
0.05714, R2 

= 0.99169, DDRmax = 4.519), and in the testing phase, it produced metrics (RMSE = 0.0252, MAE 
= 0.0170, R2 = 0.09933, DDRmax = 9.144). This exceptional performance of the MARS model surpassed the 
initially selected (Wu, 1973) [1] experimental model, which exhibited metrics (RMSE = 0.39667, MAE =
0.17463, R2 = 0.96172, DDR = 1.428). The evaluation indices conclusively establish the MARS method’s ab
solute superiority over the experimental approach proposed by Wu (1973) [1].   

1. Introduction 

Spillways constitute an essential component of dam structures, 
serving the critical function of releasing excess floodwater beyond the 
reservoir’s storage capacity, in accordance with established operational 
protocols [1]. This controlled release is imperative for maintaining the 
structural integrity of the dam and safeguarding the adjacent environ
ment. As the demand for effective flood energy dissipation solutions at 
the dam’s base has grown, various configurations of bucket-type energy 
dissipaters have been developed. Economic considerations have 

increasingly driven designers to employ ski-jump buckets as a preferred 
waterworks solution for energy dissipation (see Fig. 1). 

Trajectory or flip-bucket devices serve as energy dissipators located 
at the base of spillways in situations where tail-water levels in the stil
ling basin are inadequate for the formation of a hydraulic jump. The 
bucket redirects high-velocity flows as a jet, dissipating energy during 
flight and landing at a safe distance downstream to prevent riverbed 
damage that could jeopardize the spillway structure. This method is 
commonly employed in high spillways due to its cost-effectiveness 
compared to a deep and expensive hydraulic jump-type stilling basin. 
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It is particularly useful in cases where the hydraulic characteristics of the 
downstream channel are unstable, making accurate predictions of tail
water depths in the stilling basin challenging [3,4]. When the jet enters 
the tailwater it has already been partially disintegrated through inter
action with the surrounding air. The impact of the plunging jet however 
is still great ’enough to scour the channel bottom. At the point of impact 
with the bed material the turbulent eddies of the plunging jet are 
deflected horizontally downstream creating drag forces on the credible 
materiel greater than the resisting forces, The scoured material is 
transported downstream to a point where the resisting forces are greater 
than the drag forces and a scour hole is gradually formed, As the scour 
hole deepens the degree of turbulence of the plunging jet decreases until 
a point of equilibrium is reached between the resisting force of the bed 
material and the drag force resulting in a dish shaped scour hole being 
formed [4]. 

The depth of this scour hole, denoted as ds in Fig. 1, can be expressed 
as a function of various factors, including the discharge intensity per 
unit width (q), the height of fall (H1), the bucket radius (R), the flip 
bucket angle (Φ), and the characteristics of the sediment particles such 
as their size and type [5]. Considerable horizontal distance is traversed 
by the trajectory originating from the flip-bucket toe before it contacts 
the riverbed. This distance is contingent upon several parameters, 
namely the flow discharge, the radius and lip angle of the bucket, and 
the velocity of the flow as it enters the ski-jump bucket. As a conse
quence of this trajectory, a scour hole is formed immediately down
stream of the point where the jet affects the riverbed. The determination 
and prediction of scour hole characteristics play a pivotal role in 
enhancing the safety design and structural stability of both the dam and 
the spillway. Over the course of several decades, numerous empirical 
formulas have been developed by researchers to estimate scour depth. 
Table 1 highlights some of the widely recognized and popular empirical 
formulas in this regard. 

While the above-mentioned formulas offer convenience in practical 
application, they are not without their limitations. Typically, these 
formulas describe an idealized, approximate, and average scenario of 
prototype conditions. Consequently, there often exists a disparity be
tween the estimated values derived from these formulas and the actual, 
on-site conditions. Due to the constraints imposed by time and cost 
considerations, physical hydraulic models are primarily employed in 
research endeavors. An alternative approach employed for simulating ds 
involves Computational Fluid Dynamic (CFD) modeling. However, this 
method is characterized by its inherent complexity and the limitations 
associated with its results, which have been identified as key drawbacks. 
Moreover, additional limitations further contribute to its disadvantages. 
Consequently, there has been a growing interest among researchers in 
the application of soft-computing methods, particularly Artificial Intel
ligence (AI) to estimate ds including: the ANN, Adaptive Neuro-Fuzzy 
Inference System (ANFIS), Genetic Algorithms (GA), Harris hawks 
optimization (HHO) Bagging Regressor (BR), multivariate adaptive 
regression splines (MARS), radial basis function (RBF) network, classi
fication and regression tree (CART), Granular Computing (GC), Particle 
Swarm Optimization (PSO), the SVM, Light Gradient Boosting Machine 
(LightGBM), Support Vector Regression (SVR), Cascaded Forward 
Neural Network (CFNN), Kernel Ridge Regression (KRR), Adaptive 
Boosting Regressor (ABR), Random Forest (RF), Random Tree (RT), 
Reduces Error Pruning Tree (REP Tree), Gradient Boosting Decision Tree 
(GBDT), Extreme Gradient Boosting (XGBoost) and the GEP [12–15]. 
The utilization of MLMs has been suggested by numerous researchers to 
forecast phenomena such as scour depth. However, the absence of 
empirically measured or recorded data can be articulated as a limitation 
or drawback in their application. Table 2 provides a comprehensive 
literature review detailing the utilization of Data-Driven Models (DDMs) 
in various applications. 

This present paper distinguishes itself from prior research endeavors 
in a novel manner by employing field data, which accurately mirror the 
genuine response conditions concerning hydraulic and physical 

parameters. The preceding studies collectively demonstrate the 
commendable performance of DDMs in the prediction of scour depth 
downstream of spillways. The research is further motivated by the 
adaptability and potential exhibited by DDMs including the SVM, the 
GEP, multilayer perceptron (MLP) and the MARS in addressing the in
tricacies of scour phenomena. Additionally, established empirical for
mulas are integrated to estimate scour depth. To evaluate the efficacy of 
these empirical equations in comparison to DDMs, several statistical 
indices are employed for performance assessment. 

2. Methods and materials 

2.1. The dataset used 

While laboratory models offer several advantages, including the 
generation of substantial data and the ability to repeat tests, they are not 
without limitations and drawbacks. Issues such as the scale effect and 
challenges in accurately replicating the geometric and morphological 
characteristics of riverbeds and flow conditions underscore the need for 
caution when relying solely on laboratory models. These limitations 
make a compelling case for prioritizing the use of field data, despite their 
relatively limited quantity. Consequently, the decision was made to 
employ field data for simulating scour depth downstream of the flip 
bucket spillway. In this study, a total dataset comprising 84 data points 
was compiled. These data were sourced from various references, 
including Damel et al. (1966), [1,10,28–32]; the website ’http://www. 
ferc.gov/industries/hydropower/safety/eng-guide/chap11.pdf’, and 
[33]. Table 3 provides a comprehensive presentation of the compiled 
measurements. The geometric and hydraulic parameters referenced in 
this table are visually depicted in Fig. 1. The overall variation of the 
dependent variable, ds, concerning the independent variables is visually 
depicted in Fig. 2. 

2.2. Overview of SVM 

Introduced and advanced by Ref. [34]; the SVM represents a 
self-organizing method capable of addressing classification, regression, 
and pattern recognition challenges. Its algorithm is grounded in the 
principle of minimizing structural risk during the resolution of intricate 
problems through a combination of training and testing procedures. The 
ultimate objective of the SVM is to minimize the disparity between 
predicted and target datasets by optimizing parameter settings. The 
mathematical model underlying this optimization process can be 
elucidated as follows: 

Minimize : RSVM(ω, ξ∗) =
1
2
‖ω‖2

+C
∑n

i=1

(
ξi + ξ∗i

)
(12) 

Subject: 

di− ωφ(xi) + bi≤ ε+ ξi (13)  

ωφ(xi) + bi − di≤ ε+ ξi (14)  

ξi,ξ
∗
i ≥ 0 i = 1, 2,…, l (15) 

Fig. 1. Scour below flip bucket spillway [2].  
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Table 1 
A summary literature of the empirical equations to predict ds D/S of the flip-bucket spillway.  

Eq. No. Reference Formula Recommendations 

(1) [6]  

ds =
3.15q0.57H0.2

1

d0.32
m   

ds: scour hole depth, m 
q: discharge intensity, m2/s 
H1: fall height, m dm: sediment mean size, m 

(2) [7]  

ds= 1.90q0.54H0.225
1   

ds: scour hole depth, m 
q: discharge intensity, m2/s 
H1: fall height, m 

(3) [8]  

ds= A(qH1)
0.5   

ds: scour hole depth, m 
q: discharge intensity, m2/s 
H1: fall height, m 
A = 0.65 denotes ultimate maximum scour 
A = 0.54 represents probable scour under sustained operation 
A = 0.36 yields minimum expected to scour 

(4) [9]  

ds =
1.235q0.67H0.18

1

d0.063
50   

ds: scour hole depth, ft 
q: discharge intensity, ft2/s 
H1: fall height, ft d50: sediment mean size, ft 

(5) [1]  

ds

H1
= 2.11

⎛

⎜
⎝

q̅̅̅
̅̅̅̅̅

gH3
1

√

⎞

⎟
⎠

0.51   

ds: scour hole depth, m 
q: discharge intensity, m2/s 
H1: fall height, m g: gravitational acceleration 

(6) [10]  

ds= 1.5q0.6H0.1
1   

ds: scour hole depth, m 
q: discharge intensity, m2/s 
H1: fall height, m 

(8) [11]  

ds= 1.413q0.5H0.25
1   

ds: scour hole depth, m 
q: discharge intensity, m2/s 
H1: fall height, m 

(9) [45]  

ds

dw
= 3.13

⎛

⎜
⎝

q̅̅̅
̅̅̅̅̅

gd3
w

√

⎞

⎟
⎠

0.867
(

H1

R

)3.11   

ds: scour hole depth, m 
dw: tail water depth, m 
R: radius of the bucket, m q: discharge intensity, m2/s 
H1: fall height, m 

(10) [2]  

ds

dw
= 6.914

⎛

⎜
⎝

q̅̅̅
̅̅̅̅̅

gd3
w

√

⎞

⎟
⎠

0.694
(

H1

dw

)0.0815( R
dw

)0.233(d50

dw

)0.196

Φ0.196

⎞

⎟
⎠

ds: scour hole depth, m 
dw: tail water depth, m 
R: radius of the bucket, m q: discharge intensity, m2/s 
H1: fall height, m 
Φ: flip bucket angle, rad  
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where ω is a normal vector, 1
2‖ω‖2 is the regularization factor, C is the 

error penalty factor, b is a bias, ε is the error function, xi is the input 
vector, di is the target value, l is the number of elements in the training 
data set, φ(xi) is a feature space, and ξi and ξ∗i are upper and lower 
excess deviation. Table 4 provides a compilation of well-known kernel 
functions [35,36]. 

2.3. Overview of the GEP 

The GEP is an extension of genetic programming and genetic algo
rithms, initially developed by Ref. [37]. In the GEP, the genome is 
encoded as linear chromosomes of fixed length, which are then trans
lated into a phenotype represented as expression trees. Similar to other 
hybrid evolutionary techniques, the GEP algorithm commences with the 
random generation of an initial population comprising individual 
chromosomes of fixed length. The fitness of each chromosome is 
assessed through an evaluation function. The creation of new genera
tions involves the application of genetic operators such as mutation, 
inversion, transposition, and recombination. Subsequent adjustments 
are made to the new individuals either until a specified maximum 
number of generations is reached or until the desired level of precision is 
attained. Within the GEP model, the primary objective is to generate a 
mathematical equation using training data. A visual representation of 
the GEP process is presented in Fig. 3. 

2.4. Overview on the MARS 

As a non-parametric regression analysis, the MARS has been 
formulated by Ref. [38] to achieve precise, flexible and quick regression 
outcomes. Describing and extracting a nonlinear relationship between 
independent and target variables is the main superiority of MARS. It 
bursts the datasets into numerous regions to match a regression model to 
each region. While knots are called the break values between regions, 
the term basis function is utilized to prove each district interval of the 
independent variables. The form of basic functions are as below: 

max(0, x − k) or max(0, k − x) (16)  

Where x denotes independent variable and k is a threshold value [39]. 
MARS common formulation form is as below: 

y= f(x) + ε (17)  

f(x)= βo + βmBFm(x) (18)  

which y stands for the target variable evaluated by the unknown func
tion f(x), ε is the error, βo is coefficient of the constant value, BFm is the 
m-th basis function and βm is coefficient of BFm. The maximum number 
of BFs that is convenient for data is illustrated by m value in Eq. (18). 
The most fit node points are determined using generalized cross vali
dation (GCV) index as below [38–41]: 

GCV=
1
N

⎡

⎢
⎢
⎣

∑N

i=1

(
yi − fM(xi))

2yi − fM(xi))
2

(1 −
(C(M)

N

)2

⎤

⎥
⎥
⎦ (19)  

which N shows data number and C(M) refers a complexity penalty 
functions that can be presented by: 

C(M)=C(M) + d.M (20)  

where C(M) is the quantity of linearly independent BF, M refers the 
knots number decided in the forward process, and d is the penalty for 
every BF involved in the developed model [42]. 

2.5. Overview of the MLP 

The MLP is a fundamental architecture of the ANN used in ML and AI. 
It is a type of feed forward neural network, meaning that information 
flows in one direction, from input to output, without feedback loops. The 
MLPs are composed of multiple layers of interconnected nodes or neu
rons, each layer consisting of one or more neurons. These neurons are 
organized into an input layer, one or more hidden layers, and an output 
layer. 

In the MLP architecture, each neuron in a layer is connected to every 
neuron in the subsequent layer, and each connection has a weight 
associated with it. Neurons in the hidden layers and the output layer 
apply an activation function to the weighted sum of their inputs to 
produce an output. This allows MLPs to model complex non-linear re
lationships in data. Training an MLP involves adjusting the weights of its 
connections using techniques like back propagation and gradient 

Table 2 
A summary of literature review of DDMs application for scouring prediction.  

References Included DDMs Outcomes 

[16] The SVR and the SVRwith algorithm of innovative gunner (SVR-AIG) The SVR-AIG-based estimations are more accurate than the SVR 
standalone model estimations. 

[17] The BR, the ABR, the SVR The ABR had the best outcomes among the other models 
[18] The GEP, the MARS, the M5P Tree, the RF, the RT, the REP-Tree The GEP based model is more accurate than other prediction 

methods. 
[17] The DT, the ABR, the XGBoost, the LightGBM All models have precise outcomes. 
[19] The MLP, the RBF, the RF, and the MARS The MLP had superior performance. 
[20] The GBDT, the ET, the RF The GBDT had the highest accuracy and lowest error. 
[21] The GBDT, the CFNN, the KRR The GBDT model outperformed the CFNN and KRR. 
[46] The M5MT, the CART, the MARS The MARS technique was the best approach for the estimation of 

scour depth. 
[22] The ANN, the ANFIS, the SVR optimized with Fruitfly Optimization Algorithm (SVR-FOA). the proposed SVR-FOA method performed well 
[23] The HHO, the ANN, the ANN-HHO, the ANN-PSO, the ANN-GA The accuracy of accuracy of the ANN-HHO was more than th others. 
[24] The ANFIS integrated with ptimization methods namely cultural algorithm, biogeography based 

optimization (BBO), invasive weed optimization (IWO) and teaching learning based 
optimization (TLBO) 

the ANFIS-IWO can be used as a reliable and cost-effective method 
for predicting the scouring depth downstream of weirs. 

[25] The MARS, the ANN The MARS technique was the superior one 
[26] The GEP, the MT, the evolutionary polynomial regression approaches The MT approach yielded the most precise predictions in 

comparison with the other proposed models. 
[27] The SVM, the M5, the CART The CART produces better prediction compared to other 

techniques. 
[5] The ANN, the GP The GP based estimations were found to be equally and more 

accurate than the ANN based ones  
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descent. This training process aims to minimize the difference between 
the network’s predictions and the actual target values for a given 
dataset. MLPs are used for various machine learning tasks, including 
classification, regression, and pattern recognition. Fig. 4 illustrates a 
schematic depiction of the architecture of the MLP. 

2.6. Indices of performance assessment 

To evaluate the quality of model outcomes in comparison to the 
target values, the following indices were employed: Root Mean Square 
Error (RMSE), determination of coefficient (R2), and mean average error 
(MAE): 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(yi − xi)
2

n

√

(21)  

R2 =

⎡

⎢
⎢
⎢
⎢
⎣

N
( ∑N

i=1xiyi
)
−

(
∑N

i=1
xi

)
(∑N

i=1yi
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[N
∑N

i=1
x2

i −
( ∑N

i=1xi
)][

N
∑N

i=1
y2

i −
( ∑N

i=1yi
)]

√

⎤

⎥
⎥
⎥
⎥
⎦

2

(22)  

MAE=

∑N

i=1
|xi − yi|

N
(23) 

Table 3 
Observations of the prototype.  

Number q (m2/s) H1 (m) ds(m) Number q (m2/s) H1 (m) ds(m) Number q (m2/s) H1 (m) ds(m) 

1 34.2 31.72 12.19 39 69.5 92.35 17 77 79.26 47 29 
2 25.1 20.29 8.08 40 39 49 27.4 78 116 64.92 35.96 
3 72.49 30.42 18.29 41 47.6 26.6 24.7 79 79.06 154.2 8.82 
4 42.76 46.18 19.51 42 143.43 19.45 16 80 52.95 97.53 36.88 
5 21.37 12.55 19.51 43 48 90 70 81 79.33 98.45 48.76 
6 3.62 24.85 10.37 44 78 88.5 88 82 57.5 122.8 27.43 
7 75.8 85 28 45 26.5 96 23 83 32.6 102.1 13.41 
8 113.6 180 43 46 53.1 97.8 37 84 7.67 24 5.53 
9 68.8 49 20 47 79.6 98.5 49     
10 40 34 20 48 47.8 220 62     
11 25 31 19 49 96.5 32 35.4     
12 95.2 97 30 50 42.56 83.5 32     
13 2.6 1.8 2.5 51 25.86 83.5 32     
14 1.8 1.9 2.4 52 41 49 18     
15 17 6.3 14.3 53 41.2 83.5 32     
16 60 7.3 16.2 54 55.99 84 32     
17 32 26 11 55 48.98 83.5 41     
18 50 14 18 56 56.2 84 41     
19 14 9 6.4 57 61.33 83.5 41     
20 34 32 12.2 58 46.5 23 18     
21 25 27 8.1 59 97.54 47.85 15     
22 72 36 18.3 60 97.54 47.84 23     
23 43 50 19.5 61 42.6 56.7 19.5     
24 21 19 19.5 62 21.5 21.8 28.2     
25 3.6 25 10.4 63 46.5 25 10     
26 170 53 55 64 275 101 68     
27 60 17 17 65 57.58 163 27.5     
28 48 19 24 66 20.51 102 13.5     
29 70 19 32 67 31.4 27 15     
30 10 30 9 68 14 12 6.35     
31 32 6 11.5 69 96.3 148 37.5     
32 31.4 4 11 70 32.62 143 23     
33 25 8 16.5 71 12.1 97 12     
34 14 1 6.35 72 275 91 68     
35 83.3 115.44 47 73 26.5 96 23     
36 112.71 212.9 37.2 74 53.1 97.8 37     
37 39.3 115.74 10.6 75 79.6 98.5 49     
38 51.3 86.53 11.4 76 116.66 65 36      

Fig. 2. A 3D view of ds variation against (H, q).  

Table 4 
Types of Kernel functions.  

Kernel name Function 

Linear K(xi,xj) = (xi ,xj)

Polynomial K(xi,xj) = [(xi, xj) + 1]d 

Redial Basis Function (RBF) 
K(xi,xj) = exp

[
−

⃦
⃦xi − xj

⃦
⃦2

2σ2

]

Exponential Radial Basis Function (ERBF) K(xi,xj)= tanh[ − α(xi ,xj) + c]
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Here yi and xi are target and predicted values of relative scour depth, 
respectively, y and x are mean values of target and predicted relative 
scour depth, respectively, and N is the total number of the dataset. It is 
worth noting that the aforementioned indices provide an average mea
sure of predictive error values without conveying information about 
error distribution. In addition to these indices, a supplementary metric 
known as the Developed Discrepancy Ratio (DDR), introduced by 
Ref. [43]; has been incorporated as an additional assessment tool for 
evaluating model performance: 

DDR =
Predicted Value
Observed Value

− 1 (24) 

An insightful visual representation of DDR, utilizing the standard 
normal distribution format derived from the Gaussian function of DDR 
values, provides a more discerning assessment of model performance. 
Normalized values of scour depth, ZDDR, are calculated after standard
izing the DDR values extracted from Gaussian function of the DDR, SDDR. 
In a scatter plot depicting the graphical relationship between ZDDR and 
SDDR, it becomes evident that error distribution tendencies gravitate 
towards the centerline. Additionally, larger values of extreme SDDR 
correspond to heightened levels of accuracy. 

3. Results and discussion 

3.1. Analysis of DDMs included 

Complexity arises in DDMs, and their utility can be constrained due 
to the multitude of input parameters necessary to predict the target 
parameter. To address this challenge, this research strategically in
corporates the Froude number, Fr =

q̅̅̅̅̅̅
gH3

1

√ , as readily calculable from 

hydraulic variables, as an independent input parameter for forecasting 

the target parameter 
(

ds
H1

)
in the models. The share of the allocated data 

into the training and the testing phases of DDMs were 70 % and 30 %, 
respectively. The performance evaluation metrics for the four data- 
driven models during both the training and testing phases are delin
eated in Table 5. 

STATISTICA.12 software was used to perform the simulation using 
the SVM model. Two classification methods employed in the SVM 
include Nu-SVM and C-SVM, as described by Ref. [44]. In the former, C 
is established as a parameter utilizing the available noise information 
within the dataset. Conversely, in the latter method, the values of Nu 
serve as upper and lower error bounds for the support vectors. Following 
rigorous calculations, it was determined that the Nu-SVM model yielded 
the most favorable outcomes for classification. The Radial Basis Func
tion (RBF) Kernel function was judiciously chosen as the most optimal 
for executing the model on the measured data, as determined through a 
systematic trial-and-error procedure. The parameter values were set as 
follows: C = 8, Nu = 0.25 and γ = 11. The values of the (RMSE, MAE, R2) 
indices were obtained for both the training and the testing stages as 
follows: (0.28754, 0.1980, 0.9418) and (0.0901, 0.0648, 0.9313), 
respectively. These numerical results substantiate the correct execution 
of the model training process, as evidenced by the test phase exhibiting a 
notably higher relative accuracy. The execution of the GEP was carried 
out using the GeneXpro Tool 4.0 software. To derive the optimal for
mula, an extensive number of generations were generated and evalu
ated. The optimal formula was deduced employing operators including 
+, -, × ,/, exp(x), x− 1, x2, and x3 based on setting parameters outlined in 
Table 6. By cross-referencing Tables 5 and it is evident that the training 
phase of the Gene Expression Programming (GEP) model has been 
successfully executed, yielding the following performance metrics: 
RMSE = 0.40928, MAE = 0.25978, R2 = 0.90488. Furthermore, the 
testing phase of the GEP model has been conducted, yielding the 
following performance metrics: RMSE = 0.1628, MAE = 0.1200, R2 =

0.7146. Fig. 5 provides a visual representation of the tree expression of 
the GEP model. The constants of the models are as follows: G1C0 =
6.470001, G1C1 = 8.091095, G2C0 = − 3.724213, G2C1 = 9.700867, 
G3C0 = 1.063232, G3C1 = 9.824585. 

MATLAB software was used to run the MLP model to simulate scour 
depth. The selected MLP 1-5-1 model, as evidenced by the outcomes 
reported in Table 5, exhibited the following performance measures 

Fig. 3. Flowchart of the GEP algorithm.  

Fig. 4. General form of the MLP structure.  

Table 5 
Summary of statistical indices for DDMs outputs for testing phase.    

RMSE MAE R2 DDRmax 

Training phase SVM 0.28754 0.19800 0.94180 1.693 
GEP 0.40928 0.25978 0.90488 1.229 
MLP 0.20613 0.11716 0.98100 2.767 
MARS 0.08665 0.05714 0.99169 4.519 

Testing phase SVM 0.0901 0.0648 0.9313 2.133 
GEP 0.1628 0.1200 0.7146 1.124 
MLP 0.0583 0.0478 0.9738 2.950 
MARS 0.0252 0.0170 0.9933 9.144  

Table 6 
The values of the setting parameters in the GEP.  

Parameters Value 

Head size 7 
Chromosomes numbers 30 
Number of genes 3 
Mutation rate 0.09 
Inversion rate 0.1 
One-point recombination rate 0.3 
Two-point recombination rate 0.3 
Gene recombination rate 0.1 
Gene transposition rate 0.1 
IS transposition rate 0.1 
RIS transposition rate 0.1 
Fitness function error type RMSE 
Linking function +
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during the training phase: RMSE = 0.20613, MAE = 0.11716, and R2 =

0.981. Likewise, during the testing phase, the model showcased the 
ensuing performance metrics: RMSE = 0.0583, MAE = 0.0478 and R2 =

0.9738. Notably, it is worth highlighting that the model employed the 

Tanh activation function for the hidden layer and the Identity activation 
function for the output layer. 

The MARS Model was applied to the collected data using STATIS
TICA.12 Software. The MARS model, representing the final and most 

Fig. 5. Tree expression of GEP output.  

Fig. 6. Scatter plot of DDMs included’s outcomes vs. observed data during the training and the testing phases.  

Fig. 7. Distribution of ZDDR for DDMs.  
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optimal model among those considered, yielded the following perfor
mance evaluation metrics: during the training phase, the model ach
ieved RMSE = 0.08665, MAE = 0.045714, R2 = 0.99169, while during 
the testing phase, it delivered RMSE = 0.0252, MAE = 0.0170, R2 =

0.9933. The values of model specifications including number of terms, 
number of basis function, order of interactions, penalty, threshold and 

GCV are 2, 1, 1, 2, 0.0005 and 0.12821, respectively. The following 
model should be used directly to forecast scour depth: 

Ds= 0.00477 + 1.44855875148789 ∗ max(0, Fr − 0.0040438) (25) 

A scatter plot curve relative to the ideal 1:1 line represents an 
additional approach for assessing simulator performance. In this 
graphical representation, the narrower the distribution of data points 
around the ideal line, the greater the relative superiority of the corre
sponding simulator. Put differently, a smaller distance between the data 
points and the ideal line signifies the proximity of the simulator’s 
behavior to that of the superior model. Fig. 6 presents a scatter plot of 
the four DDMs’ outputs and target dataset. As depicted in the diagram, it 
is evident that the minimum and maximum distances from the ideal line 
are associated with the MARS and GEP models, respectively. However, it 
is essential to acknowledge that the distance from the ideal line tends to 

Fig. 8. Tylor diagram for DDMs for both the training and the testing stages.  

Table 7 
Summary of statistical indices of empirical relation included.  

Developer RMSE MAE R2 DDR max 

[7] 0.57775 0.30908 0.59474 0.796 
[8] 0.41348 0.24791 0.76465 0.836 
[1] 0.39667 0.17463 0.96172 1.428 
[10] 0.39559 0.22135 0.84948 1.038 
[11] 1.06712 0.34295 0.88314 0.698  

Fig. 9. Scatter plot view of the empirical equations performance.  

Fig. 10. Distribution of ZDDR values for the empirical formulas.  

M. Fuladipanah et al.                                                                                                                                                                                                                          



Results in Engineering 20 (2023) 101604

9

be more pronounced in the context of larger datasets. 
Referencing the elucidations pertaining to the DDR index, Fig. 7 vi

sualizes the performance of the DDMs as determined by the distribution 
of this index throughout both the training and testing stages. According 
to the insights derived from Fig. 7, the MARS emerges as the top- 
performing model, showcasing superior performance in both the 
training and test phases. Specifically, the MARS model exhibits the 

highest values of the 
(

ds
H1

)

DDR 
parameter, amounting to 4.51 in the 

training phase and 9.14 in the testing phase. Consequently, upon anal

ysis of the 
(

ds
H1

)

DDR 
parameter, the MLP, the SVM and the GEP models are 

subsequently ranked as the second, third, and fourth best models, 
respectively. The Taylor diagram is a graphical representation that 
quantifies the alignment of model outputs in relation to reference points, 
employing statistical metrics such as the correlation coefficient and 
standard deviation. Smaller distances on the Taylor diagram signify 
higher levels of accuracy in the models’ predictions. In accordance with 
the information provided, Fig. 8 showcases Taylor’s diagram for the 
DDMs during both the training and testing phases. This figure unmis
takably highlights the superior performance of the MARS model in 
comparison to the other three models. 

3.2. Analysis of empirical equations 

In accordance with the data presented in Table 1, a comparative 
evaluation was conducted on five commonly utilized empirical for
mulas, namely [1,7,8,10], and [11]. The values for the RMSE, MAE, R2 

and DDR indices pertaining to each of the equations are provided in 
Table 7. 

The model proposed by Ref. [1] is identified as the superior model 
within this analysis. It exhibits the lowest RMSE and MAE indices and 
the highest R2 and DDRmax indices. Conversely, the least accurate pre
dictions are associated with the equations formulated by Refs. [7,11]. In 
order to assess the performance of each of the five experimental equa
tions graphically, a scatter plot is depicted in Fig. 9, showing the pre
dicted and observed dataset. The model with the shortest distance from 
the ideal 1:1 line on this curve will indicate its relative superiority. 
Clearly, in this figure, it is evident that the model proposed by Ref. [1] 
exhibits the least deviation from the ideal line. 

The graphical comparison of the performance of five experimental 
models based on the DDR index, as depicted in Fig. 10, reveals that the 
[1] model stands out as the superior model among the others. This 
determination is supported by its observation of the highest peak and the 
narrowest distribution curve when compared to the vertical axis. The 

Taylor diagram, presented in Fig. 11, visually represents the disparity 
between predicted data and the reference data. This diagram unequiv
ocally substantiates the superior performance of [1] model. 

4. Conclusions 

One of the primary objectives of spillway design is to effectively 
dissipate energy at high dams, thereby mitigating downstream scouring. 
This aspect of spillway design holds paramount importance for dam 
safety, as scouring downstream represents one of the most critical and 
potentially hazardous issues that can arise. In this study, DDMs are 
developed for the prediction of scouring depth downstream of the flip- 
bucket spillway. The novelty of the study lies in the use of field data 
and using readily Froude number parameter as input variable. The 
innovation presented in this research can be summarized in two sig
nificant aspects: (i) utilization of field-measured data: the research in
corporates the novel approach of utilizing field-measured data, which 
adds a valuable real-world dimension to the study; (ii) simplification of 
DDMs: the research simplifies the complexity associated with DDMs by 
relying on a single readily input variable, namely the Froude number. 
This streamlines the modeling process and enhances its practical 
applicability. In the current paper, an exploration of the capabilities and 
potential of the SVM, the GEP, the MLP and the MARS has been un
dertaken. The objective is to predict the scour depth downstream of a 
flip-bucket spillway utilizing field-collected data. In addition to these 
DDMs, five empirical equations have also been employed. The findings 
of this investigation are as follows.  

• All four DDMs exhibit acceptable potential for predicting scour 
depth. Nevertheless, the MARS model outperforms the other models 
in terms of all evaluation indicators, indicating its superior 
performance.  

• Furthermore, when comparing the five regression equations using 
performance evaluation indices, the model proposed by Wu (1937) 
demonstrated relatively higher accuracy. However, in the direct 
comparison between the DDM and the regression model, the results 
unequivocally establish that the MARS model possesses a substantial 
and statistically significant advantage over the empirical equation. 
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Prediction of clearing temperatures of bent-core liquid crystals using decision trees 
and multivariate adaptive regression splines, Liq. Cryst. 43 (2016) 1028–1037. 

[43] R. Noori, A. Khakpour, B. Omidvar, A. Farokhnia, Comparison of ANN and 
principal component analysis-multivariate linear regression models for predicting 
the river flow based on developed discrepancy ratio statistics, Expert Syst. Appl. 37 
(2010) 5856–5862. 

[44] R.E. Fan, P.H. Chen, C.J. Lin, Working set selection using second order information 
for training support vector machines, J. Mach. Learn. Res. 6 (2005) 1889–1918. 

[45] M. Ghodasian, Maximum depth of scour downstream of flip bucket, in: Proceeding 
River Flow, 2002, pp. 1079–1081. Belgium. 

[46] R. Shafagh Loron, M. Samadi, A. Shamsai, Predictive explicit expressions from 
data-driven models for estimation of scour depth below ski-jump bucket spillways, 
Water Supply 23 (1) (2023) 304–316. 

M. Fuladipanah et al.                                                                                                                                                                                                                          

http://refhub.elsevier.com/S2590-1230(23)00731-4/sref1
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref1
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref2
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref2
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref3
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref3
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref3
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref4
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref4
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref5
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref5
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref5
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref6
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref6
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref7
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref7
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref8
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref8
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref8
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref9
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref9
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref10
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref10
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref11
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref11
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref11
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref12
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref12
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref12
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref13
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref13
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref13
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref13
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref14
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref14
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref14
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref14
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref14
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref15
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref15
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref15
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref15
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref16
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref16
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref16
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref16
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref17
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref17
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref17
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref18
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref18
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref18
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref19
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref19
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref19
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref20
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref20
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref20
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref20
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref21
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref21
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref21
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref22
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref22
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref22
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref22
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref23
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref23
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref23
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref23
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref24
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref24
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref24
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref25
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref25
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref25
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref26
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref26
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref26
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref27
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref27
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref27
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref28
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref28
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref28
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref29
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref29
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref30
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref30
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref31
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref31
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref31
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref32
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref32
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref32
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref33
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref33
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref33
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref34
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref34
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref35
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref35
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref35
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref36
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref36
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref37
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref37
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref38
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref39
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref39
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref39
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref40
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref40
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref40
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref41
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref41
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref41
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref42
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref42
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref42
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref43
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref43
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref43
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref43
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref44
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref44
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref45
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref45
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref46
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref46
http://refhub.elsevier.com/S2590-1230(23)00731-4/sref46

	Precise forecasting of scour depth downstream of flip bucket spillway through data-driven models
	1 Introduction
	2 Methods and materials
	2.1 The dataset used
	2.2 Overview of SVM
	2.3 Overview of the GEP
	2.4 Overview on the MARS
	2.5 Overview of the MLP
	2.6 Indices of performance assessment

	3 Results and discussion
	3.1 Analysis of DDMs included
	3.2 Analysis of empirical equations

	4 Conclusions
	Funding
	Author contribution
	Declaration of competing interest
	Data availability
	References


