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Common protein-coding variants influence the
racing phenotype in galloping racehorse breeds
Haige Han1, Beatrice A. McGivney 2, Lucy Allen3, Dongyi Bai1, Leanne R. Corduff2, Gantulga Davaakhuu4,

Jargalsaikhan Davaasambuu5, Dulguun Dorjgotov6, Thomas J. Hall 7, Andrew J. Hemmings3,

Amy R. Holtby 2, Tuyatsetseg Jambal6, Badarch Jargalsaikhan8, Uyasakh Jargalsaikhan5, Naveen K. Kadri 9,

David E. MacHugh 7,10, Hubert Pausch 9, Carol Readhead11, David Warburton12, Manglai Dugarjaviin1✉ &

Emmeline W. Hill 2,7✉

Selection for system-wide morphological, physiological, and metabolic adaptations has led to

extreme athletic phenotypes among geographically diverse horse breeds. Here, we identify

genes contributing to exercise adaptation in racehorses by applying genomics approaches for

racing performance, an end-point athletic phenotype. Using an integrative genomics strategy

to first combine population genomics results with skeletal muscle exercise and training

transcriptomic data, followed by whole-genome resequencing of Asian horses, we identify

protein-coding variants in genes of interest in galloping racehorse breeds (Arabian, Mon-

golian and Thoroughbred). A core set of genes, G6PC2, HDAC9, KTN1, MYLK2, NTM, SLC16A1

and SYNDIG1, with central roles in muscle, metabolism, and neurobiology, are key drivers of

the racing phenotype. Although racing potential is a multifactorial trait, the genomic archi-

tecture shaping the common athletic phenotype in horse populations bred for racing provides

evidence for the influence of protein-coding variants in fundamental exercise-relevant genes.

Variation in these genes may therefore be exploited for genetic improvement of horse

populations towards specific types of racing.
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Horse racing is among the oldest known sports, the general
concept of which—horses, either mounted or harnessed,
travelling at speed over a certain distance and terrain with

the horse finishing first being the winner—has been largely
unchanged for millennia1,2. The quest for wealth and status in
racing traverses diverse cultures and geographies and today
mounted horse racing is a globally popular sport. Different
populations of horse have been developed for racing through a
process of selective breeding for attributes required to excel in
specific types of competition; these include breeds that compete
in harness and trotting races, and others, including the Arabian,
Mongolian and Thoroughbred, that are galloping breeds.

The Mongolian is one of the oldest extant horse populations
and although domesticated, most animals are free ranging and
experience minimal human intervention3. Mongolian horse
populations have relatively high genomic diversity compared to
other breeds4,5, which may reflect the role of the central Asian
steppe region as an important centre for horse domestication6.
The Mongolian is generally classified as a breed in toto but several
phenotypically and genetically distinct subpopulations exist4,
which are used for meat, milk, transport, and racing. Racing in
Mongolia is celebrated annually during the Nadaam festival of
racing where adult horses race over long distances (25–30 km)
and harsh terrain. In recent years, Thoroughbred stallions have
been imported for crossbreeding intended to improve speed traits
in the racing populations.

The Arabian is also an ancient breed with high levels of genetic
diversity5,7. Bred for millennia and developed by Bedouin
nomads for transport and military use, the Arabian has tradi-
tionally excelled in long distance endurance racing (80–160 km),
often in extreme climatic conditions. More recently there has
been strong selection among subgroups for an aesthetic con-
formation phenotype, which is valued in show competition, and
for short-distance track racing (~1600 m). Among track racing
Arabians there is evidence of recent Thoroughbred crossbreeding,
presumably for the introduction of speed, with some horses
having up to 60% Thoroughbred ancestry7. Although considered
a highly polygenic trait, sequence variants at several genes have
been reported to be directly associated with performance traits in
the Arabian breed7–10.

Compared to the Arabian and Mongolian breeds, the Thor-
oughbred was developed relatively recently during the last three
centuries by crossing native British and Irish mares with stallions
imported from the Middle East11. Most Thoroughbreds compete
in races over much shorter distances (1000–3200 m) on main-
tained track surfaces and are bred for both speed and stamina
attributes12. Originating from a very small number of founders13,
and with subsequent restricted gene flow since the formation of
the stud book14, the Thoroughbred now has very low levels of
genetic diversity despite a large global census population
size5,15,16. These population demographics, coupled with constant
human-mediated selection pressures, have resulted in athletic
traits with genetic architectures that are especially amenable to
modern genomics, particularly because of the high levels of
linkage disequilibrium observed across the Thoroughbred
genome17 with haplotypes extending >4Mb in regions under
selection5,12. As a result, genome-wide association studies
(GWAS) have been successfully deployed to identify quantitative
trait loci (QTLs) for complex traits using relatively modest sample
sizes18–21. Investigations of genomic targets of selection in the
Thoroughbred5,15,16,22,23, and functional analyses of gene
expression profiles in skeletal muscle24–26, have identified suites
of genes and molecular pathways that are enriched for functions
in energy metabolism, muscle contraction, haemostasis, orga-
nismal growth and development, lipid metabolism, the mito-
chondrion, fatty acid metabolism, cardiovascular signalling,

cellular stress and injury, and neurotransmitters and other ner-
vous system signalling.

The recently developed omnigenic model proposes that phe-
notypic outcomes for eukaryotic complex traits are directly
shaped by core genes that are embedded in highly interconnected
tissue-specific gene regulatory networks, which are substantially
modulated by very large numbers of genetic variants of small
effect at peripheral genes across the entire genome27. The most
well studied and arguably core exercise-relevant gene in athletic
horses is the myostatin gene (MSTN), where a SINE insertion
promoter polymorphism28 profoundly affects skeletal muscle
development29,30 and distribution of muscle fibre types5,31,32. The
combined effect of the major MSTN QTL and additive genetic
variation across the genome is illustrated by recent work exam-
ining the genomic architecture and heritability of optimum race
distance in multiple Thoroughbred populations33.

In addition to myriad genetic contributions, understanding the
biological basis of complex traits is further challenged by the
variation in multi-dimensional system-wide endophenotypes that
can be dynamic and influenced by the environment, a concept
that emerged initially in neurobiological genomics34. Like all
athletes, in addition to multiple anatomical, physiological, and
metabolic processes, environmental factors and interactions also
determine the elite athletic phenotype of racehorses35,36. Conse-
quently, numerous endophenotypes likely contribute to biological
systems relevant to the equine athlete. However, notwithstanding
this complex vista, relatively straightforward selection signal
detection approaches—without recourse to accurately measured
endophenotypes such as hormone levels or other biomarkers—
can be used to identify genes or genomic regulatory elements
containing sequence variants contributing to recent evolutionary
adaptation and important physiological traits in livestock
species37–40.

In the present study, we hypothesised that galloping racing
breeds harbour signals of selection that contain genomic loci with
sequence variants contributing to racing ability. To refine the
selection signals, we assigned functional relevance to SNPs that
were in proximity to differentially expressed genes (DEGs) in
Thoroughbred skeletal muscle24 and then interrogated prioritised
genomic regions for putative functional protein-coding variants
identified from whole genome sequence (WGS) data generated
from Asian landrace horse breeds. Based on predicted variant
effects and the biological functions of the genes containing them,
we hypothesised that these variants may contribute to variation in
racing ability among horse breeds. To further explore and validate
this hypothesis, we generated genotypes for a panel of these
variants in independent sample sets of Thoroughbred and
Mongolian Racing horses and in other racing and athletic horse
breeds, and examined whether they were associated with racing
traits. The overall goal of this research was to identify a set of
genetic markers contributing to athletic performance in popula-
tions of horses bred for competitive racing. These markers may be
used for the improvement of racing populations, including
among Mongolian horses, for which there has been less oppor-
tunity for systematic pedigree and phenotype selection that is
advanced in Thoroughbred and the other more common racing
breeds.

Results and discussion
Population structure. An overview of the sequential steps of the
study is provided in Supplementary Fig. 1. We first evaluated
genetic relatedness and population structure based on genome-
wide SNP-array derived genotypes among the Racing breeds
(Arabian, Mongolian Racing and Thoroughbred) in the context of
non-Racing breeds using a principal component analysis (PCA)
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(Fig. 1) and an admixture structure plot (Fig. 2). In the PCA plot
of PC1 and PC2, Thoroughbreds were tightly clustered with no
overlap with any other breed, while Arabian and Mongolian
Racing horses were more loosely distributed across PC1 (32.5% of
the variance) and there was some overlap between the two
populations although a shared recent ancestry was not expected.

Since Thoroughbred admixture has been observed in track
racing Arabians7 and there has been an introduction of
Thoroughbred stallions to Mongolia in recent years, we assessed
the contribution of Thoroughbred ancestry in the Arabian and
Mongolian Racing populations (Fig. 2). In the admixture
structure analysis, the Belgian breed was used as a comparator
population as it is distantly related to all three Racing breeds5.
The lowest cross validation error for K = 2–6 modelled ancestral
populations was observed for K = 4 (Fig. 2); therefore, this value
was considered the most suitable for evaluating ancestry and
quantifying admixture41,42. The Belgian and Thoroughbred
displayed minimal evidence of admixture arising from the other
breeds. Five Arabian samples exhibited >50% Thoroughbred
genetic ancestry and eight had no Thoroughbred contribution.
Except for five animals, the Mongolian Racing samples had some
shared ancestry with the other breeds and Thoroughbred ancestry
was >50% in one sample. There was minimal sharing of genetic
background between the Mongolian Racing and Arabian
populations. Based on the structure plot, it is clear that there is
Thoroughbred ancestry in many of the Mongolian Racing and
Arabian animals, and this is reflected in their position along PC1.
Supplementary Data 1 details the individual ancestry contribu-
tions at K = 4 modelled ancestral populations for animals in
the study.

Separate PCA plots were also generated for the Arabian and
Mongolian Racing populations genotyped in this study compared
to other Arabian horses7 (Supplementary Fig. 2) and Mongolian
horses indigenous to Inner Mongolia, China4 (Supplementary
Fig. 3). The Arabian horses were genetically diverse and were

distributed predominantly across PC2 (16.2% of the variance),
which encompassed most of the Arabian variation to the
exclusion of the Straight Egyptian. The Mongolian Racing horses
did not overlap with the Chinese Mongolian horses and were
distributed mainly across PC2 (13.2% of the variance).

In summary, although there was some shared ancestry among
the Racing populations, this was not widespread among
individual animals suggesting that the observed Thoroughbred
admixture most likely reflects recent breeding practices. There-
fore, it is unlikely to influence detection of long-standing selection
signals due to persistent selection over relatively extended time
frames. Furthermore, the composite selection signals (CSS)
approach used in this study combines component signals to
detect only strongly selected regions that have a common signal
across the constituent tests39. By contrast there is considerable
Thoroughbred gene flow in other racehorse breeds such as
Quarter Horse, which has a distinct subpopulation bred for
racing5,16. Consequently, selection signals identified here among
the Racing populations (Arabian, Mongolian Racing, and
Thoroughbred) were hypothesised to reveal genomic regions
contributing to similar genomic architectures that result from
convergent evolution towards the racing phenotype and not
gene flow.

Genomic signals of selection among Racing breeds. To identify
genomic regions targeted by selection for the racing phenotype,
we compared allele frequency distribution variation among two
data sets comprising horses from Racing (n= 90) and non-
Racing (n= 483) breeds (Supplementary Data 2) using a CSS test
that combines the XP-EHH, FST and ΔSAF statistics39. Genome-
wide distribution of the smoothed CSS score test statistics (-log10
P) for comparison of the Racing versus non-Racing populations
identified 14 genomic regions with signals of selection, defined as
clusters of SNPs (>5) among the top 1% SNPs, on ECA1, ECA2,
ECA4, ECA5, ECA7, ECA9, ECA14, ECA17, ECA18, and ECA22
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(Supplementary Data 3, Fig. 3). Signals on ECA1, ECA7, ECA17
and ECA18 were the highest ranking according to the CSS score.
The top ranked region (ECA1, 45.34–46.54 Mb) contained the
PCDH15 and ZWINT genes, which supports results obtained for
these genes in two different Thoroughbred population
samples15,16. A selection signature at this genomic region was also
previously detected in the same Thoroughbred sample cohort
used here with different statistical approaches (di, H, H12, and
Tajima’s D)5,7.

There was considerable overlap with selection signals pre-
viously reported in a range of athletic horse breeds and the
selection signals also overlapped with QTLs identified in GWAS
for racing performance traits in Thoroughbreds43,44 (Table 1).
Notably, the second ranked region (ECA7: 40.44–42.86Mb)
containing the NTM gene, coincided with the top GWAS peak
identified from a comparison of Thoroughbreds that had raced
and Thoroughbreds that had never had a racecourse start44, and a
selection signal on ECA2 (ECA2: 100.3–101.78Mb) overlapped
with a GWAS peak for measured speed traits in juvenile
Thoroughbreds43.

Functional enrichment among genes in selected regions. To
assess enrichment of functional ontologies in selected regions for
Racing, we assigned functional annotation to all the genes in the
regions defined by the top 1% SNPs (including those with <5
SNPs) using the DAVID functional annotation tool45 (Table 2,

Supplementary Data 4). A challenge to employing functional
enrichment tools to such gene sets is the presence of gene family
clusters in the same chromosomal region; for example, the
gamma-aminobutyric acid signalling pathway (GO:0007214) and
GABAergic synapse (GO:0098982) genes (GABRA1, GABRA6,
GABRB2, GABRG2, SLC12A2) are, except for SLC12A2, located at
a single locus on ECA14. Nonetheless, there were several exercise-
relevant gene ontology terms enriched among the genes that were
located on different chromosomes including heart looping
(GO:0001947; BBS4, BBS5, SETDB2, KIF3A), cardiac muscle tis-
sue morphogenesis (GO:0055008; BMP2, MYLK2, XIRP2), cel-
lular respiration (GO:0045333; FASTKD1, COX4I2, TBRG4),
skeletal muscle satellite cell differentiation (GO:0014816;
MEGF10, MYLK2), and glycolysis/gluconeogenesis (GO:0006094;
ADPGK, ALDH7A1, G6PC2, PKM) (Table 2).

Genomic signals of selection in Arabian, Thoroughbred, and
Mongolian Racing breeds. We evaluated the overlap between the
Racing selection signals and selection signals identified when each
of the Racing breeds was analysed separately (Table 1, Supple-
mentary Data 3). The overlap among the Racing selection signals
with selection in the Thoroughbred (only) was clear, with nine of
the 14 clusters also detected in the Thoroughbred versus other
breeds analysis (Supplementary Fig. 4, Supplementary Data 3).
There were six selected regions unique to Thoroughbred on
ECA1, ECA21, ECA28 and ECA30.
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There was also considerable overlap among the Racing
selection signals with selection in the Arabian (only), with seven
of the 14 clusters also detected in the Arabian versus other breeds
analysis (Supplementary Fig. 5, Supplementary Data 3). There
were 11 selected regions unique to Arabian on ECA2, ECA3,
ECA8, ECA12, ECA19 and ECA23. The Arabian (only) selected
regions contained some recognised equine exercise relevant genes
including COX4I129,46,47, PPARGC1A47,48 and DMRT349; all
three of these genes have been identified within runs of
homozygosity in several horse breeds50.

Only two Racing selection signals overlapped with Mongolian
Racing (only) selection signals, with 15 clusters unique to
Mongolian Racing. Three regions unique to Mongolian Racing
stood out as having very strong signals of selection (ECA5, 26, 28)
(Fig. 4, Supplementary Data 3). The top ranked region spanned
5.6 Mb on ECA5 (43.32–48.93 Mb) and contained an eSNP
(rs69550318) for the SELENBP1 gene that has been identified
among the top 10 trans eQTL among genes expressed in
Thoroughbred skeletal muscle51. In human endurance athletes
SELENBP1 is differentially expressed in blood in response to
administration of human recombinant erythropoietin suggesting
a potential role in the regulation of haematopoiesis52,53. The top
ranked SNP for the overall CSS score and XP-EHH statistic was
located within the TBX15 gene that functions in skeletal
development of the limb, vertebral column54, and shoulder and

pelvic girdles55. Conformation is a key phenotype on which
racehorses are selected and the axis of the pelvis has been shown
to be associated with injury risk and performance in
Thoroughbreds56. TBX15 also plays a major role in skeletal
muscle fibre type differentiation and regulates the metabolism of
glycolytic myofibres57 and white adipocytes58 especially in the
browning of adipocytes and has been considered a target for the
treatment of obesity59,60. In this regard, we previously proposed
that adipocyte browning may be a key contributor to the equine
athletic phenotype22. Furthermore, TBX15 is among the top
ranked differentially expressed downregulated genes in Thor-
oughbred skeletal muscle in response to training24, implicating it
as central to adaptation to the exercise stimulus.

The second ranked CSS region contained the top ranked
SNP according to the ΔSAF statistic that was 16 kb from the
closest gene, PPARA, which has a major role in exercise and
training and is associated with elite human endurance athlete
status61,62. The highest-ranking SNPs on ECA26 encompassed
three genes (NRIP1, BTG3, and CHODL) all of which may be
candidate genes for exercise adaptation63–68. The highest-
ranking SNPs according to the FST statistic were on ECA7
within the NDUFB7 and CACNA1A genes. NDUFB7 encodes a
structural subunit of complex I of the mitochondrial respira-
tory chain and mutations in the gene have been observed to
cause hypertrophic cardiomyopathy and lactic acidosis69. In a
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cancer model, NDUFB7 expression is directly modulated by
PPARA70 and mutations in CACNA1A cause congenital ataxia
in humans71,72.

Challenges to identifying candidate genes. It is difficult to rely
solely on selection signals arising from SNP genotyping array data
to pinpoint the gene(s) that may have been subject to natural or

human-mediated selection. Almost half of the selection signals
identified in the four analyses spanned >1Mb; the largest region
was for Mongolian Racing (ECA5: 43.32–48.93Mb, 5.6 Mb),
followed by three regions on ECA17, ECA7, and ECA18 for
Thoroughbred (3.5 Mb to 2.9 Mb in size); the largest selection
signal for Arabian was 1.8 Mb on ECA3 (37.45–39.25Mb); and
the largest region for the Racing breeds was the second highest
ranked selection signal on ECA7 (2.4Mb). For all analyses, there

Table 2 Summary of exercise-relevant gene ontology terms enriched among genes in Racing selected regions.

DAVID functional annotation

Biological process KEGG Pathway

Chrom. Cluster
region (Mb)

Heart
looping

Cardiac muscle tissue
morphogenesis

Cellular
respiration

Skeletal muscle satellite
cell differentiation

Glycolysis/
gluconeogenesis

ECA17 21.03–23.27 SETDB2
ECA18 48.08–50.4 BBS5 XIRP2 FASTKD1 G6PC2
ECA22 23.37–24.4 MYLK2 COX4I2 MYLK2
ECA14 41.12–42.22 KIF3A
ECA14 46.82–47.91 MEGF10 ALDH7A1
ECA1 122.12–122.93 BBS4 ADPGK

PKM

The complete set of results is provided in Supplementary Data 4.
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Fig. 4 Manhattan plot for the results of the composite selection signals (CSS) analysis to detect targets of selection among Mongolian Racing (MonR)
horses (n= 24 horses) when compared with other breeds (n= 549 horses). The results were obtained by averaging the CSS scores of SNPs within
100 kb sliding windows. The dashed grey line indicates the genome-wide (1% SNPs) threshold of the empirical scores and the top SNPs are indicated by
red dots.
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was a positive relationship between CSS score and the size of the
region identified (r2 = 0.6). Therefore, the most strongly selected
regions (and regions of greatest interest) were the largest and in
most cases these regions contained sizeable numbers of genes.
Proximity of a top ranked SNP (using CSS or any of the indivi-
dual test statistics) to a gene may be informative to some degree;
however, linkage disequilibrium extends across large regions in
horse populations17, the equine SNP genotyping arrays exhibit
ascertainment bias73,74 being designed to assay genetic variation
among the main European and North American breeds and, as
illustrated above, many genes in each detected region exhibit
biological functions easily interpretable as affecting exercise
physiology. Therefore, to better characterise genes subject to
selection for exercise traits, we used additional methods that
leveraged transcriptomics data to prioritise SNPs proximal to
DEGs in equine skeletal muscle, and WGS data from a cohort of
(mostly) Asian horses.

Integrative genomics. Differential patterns of gene expression are
the key determinants of phenotype, and integration of tran-
scriptomics and genetic data has been successfully applied to
understand the molecular basis of exercise adaptation75,76. Here,
to refine the SNPs from the population genomics analyses, we
integrated these data with DEG sets derived from Thoroughbred
skeletal muscle RNA-seq data that distinguish exercise (untrained
exercise, UE) and training (trained rest, TR) response
transcriptomes24. For computational efficiency, the gene lists
were refined to include DEGs with Padj. < 10−12 (UE) and Padj. <
10−4 (TR), which resulted in 407 (UE) (Supplementary Data 5)
and 230 (TR) (Supplementary Data 6) DEGs .

The R software package gwinteR77 was used to determine
whether genomic regions containing SNPs that are proximal to
genes within the DEG sets were enriched for significance in the
CSS analysis for Racing versus non-Racing breeds. The numbers
of statistically significant SNPs pre- and post-data integration are
summarised in Supplementary Data 7. In terms of SNP
enrichment (Pperm. < 0.1), the integrative analysis was effective
for the two input DEG sets. Using a search window that
iteratively increased in size from 10–100 kb up and downstream
of the genes of interest, a search space of ±100 kb produced the
highest number of significantly enriched SNPs with the lowest
probability of being significant by chance when compared to a
null distribution of 1,000 sets of SNPs randomly sampled from
the CSS dataset. SNPs within ±100 kb of a DEG were therefore
selected as the target SNP sets to generate new q-values. Gene loci
associated with enriched CSS SNPs are provided in Supplemen-
tary Data 8. Two genes (LPIN1, LRRC3B) were enriched for SNPs
(q < 0.05) in the exercise response (UE) gene set and three genes
(CBR4, SYNDIG1, MYOM2) were enriched for SNPs (q < 0.05) in
the training response (TR) gene set. Five genes (HMOX1, KTN1,
MYLK2, NEO1, TUBA4A) were common to both outputs (q <
0.1) and two of these (NEO1, MYLK2) were located within the
selected regions defined by the top 1% CSS SNPs.

Since there was less overlap between the Mongolian Racing
selection signals and the Racing selection signals than there was
for the Thoroughbred and the Arabian, we separately integrated
the Mongolian Racing CSS SNPs in the context of the skeletal
muscle DEGs to refine the gene sets (Supplementary Data 9).
Again, using 100 kb windows, three genes (PPP2R3A, PELO,
GLB1) were enriched for SNPs (q < 0.05) in the exercise response
(UE) gene set and three genes (TBX15, KHDRBS3, VEGFA) were
enriched for SNPs (q < 0.05) in the training response (TR) gene
set (Supplementary Data 10). In addition, three genes (MAP7D1,
STAC3, VEGFA) were common among the two outputs (q < 0.1);
however, none of these was located within the selected regions

defined by the top 1% CSS SNPs. Four DEGs with localised SNP
enrichment were located in the top-ranked CSS region for the UE
and TR gene sets (APH1A, ATP1A1, UE; CA14, TBX15, TR) and
four were among the other CSS regions (ANKRD23, IFI30,
RAB30, UE; NXN, TR). The five most significant SNPs for the TR
gene set were upstream and within the TBX15 gene. The most
significant SNP for the UE gene set was in PPP2R3A.

Whole genome resequencing and variant calling. To identify
gene variants with putative functional effects that may be the
targets of selection we generated WGS data for 70 horse samples
(Supplementary Fig. 6, Supplementary Data 11). A total of ~652
billion 150 bp paired-end reads were generated, with an average
depth of 30.13× per individual animal and an average genome
coverage of 99.58% (Supplementary Data 12). We obtained
3,846,455 and 3,511,329 polymorphic variants on average per
sample after mapping with SAMtools and GATK, respectively, of
which 3,177,005 were identified using both methods (Supple-
mentary Data 13). After combining all SNPs from 70 animals, a
final set of 24.41 million unique SNPs was retained (3.18 million/
individual animal), along with 2.03 million insertion/deletion
polymorphisms (indels). Among the ~2 million SNPs on the
MNEc2M equine high-density SNP genotyping array74, on
average 315,491 SNPs were identified in the sequenced samples
with an average of 99.83% genotyping concordance, which
demonstrates the reliability of our SNP calling (Supplementary
Data 14).

Identification of sequence polymorphisms in exercise relevant
genes. To generate a panel of sequence polymorphisms to test for
alleles with significant deviations in frequency between different
subgroups of horses, we focused on identifying protein-coding
variants in candidate genes within the selection signal regions and
genes identified from the integrative analysis. We focused on
polymorphisms (SNPs and small indels) with moderate minor
allele frequencies (MAF >0.1) as we did not expect this approach
to identify rare small-effect variants. In addition, we did not
expect to identify severely deleterious mutations, and therefore
the search was not limited to variants with a predicted high effect
on modifying gene function.

For the Racing breeds, the eight highest ranked selected regions
and 11 significant regions from the integrative analysis (five
common to UE and TR, including two that also overlapped with
CSS; three unique to UE; three unique to TR) were used to search
for putative functional variants with the WGS data (Table 3).
Among the searched regions, for validation we chose high-effect
variants in four candidate genes and moderate effect variants in
14 candidate genes (Supplementary Data 15). Three regions did
not contain any variants that met the prioritisation criteria.
Notably absent were variants in the top ranked CSS region on
ECA1 that contained PCDH15 and ZWINT. PCDH15 has been
associated with lipid phenotypes78, but is best known for
association with deafness79 and is not a compelling candidate
gene. On the other hand, the ZW10 interactor protein, encoded
by ZWINT, functions in neurotransmitter release and in rodents
mediates negative behaviour induced by neuropathic pain80,
which may be relevant to exercise81. We previously reported a
sequence tag <5 kb from ZWINT among the most differentially
expressed downregulated transcripts in the training-response
skeletal muscle transcriptome in the horse25 implicating the locus
as functionally relevant to exercise. The absence of identified
gene-specific variants in this region may be explained by the focus
here on the identification of common protein-coding variants,
which precludes the identification of sequence variants in
genomic regulatory elements, copy number variants, and
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chromatin state modifications that also contribute to the gene
regulatory networks underlying complex traits82,83.

A similar approach was taken to identify putative functional
variants within regions identified for the Mongolian Racing
analyses. For Mongolian Racing the seven highest ranked selected
regions and seven significant regions from the integrative analysis
(one common to UE and TR that also overlapped with CSS; four
unique to UE including one that overlapped with CSS; two
unique to TR) were prioritised (Table 3). For validation, we chose
high effect variants in four candidate genes and moderate effect
variants in eight candidate genes (Supplementary Data 15).

In total, 32 polymorphisms in 27 genes were selected for
validation genotyping on the basis that the variants disrupt the
sequence of proteins with central roles in exercise physiology—
including key functions associated with muscle, heart, angiogen-
esis/blood, limb development, metabolism, and neurological
tissues. The known biological functions of the genes are
summarised in Supplementary Note 1. Of the 32 polymorphisms,
23 SNPs met the assay design criteria and passed post-genotyping
quality control and were used in tests of genetic association.
Genotypes were generated for independent validation sample sets
that were not used for the selection signals analyses.

Genetic association with the racing phenotype. We hypothe-
sised that genetic variants targeted by selection for the racing
phenotype segregate among horse breeds to influence underlying
endophenotypic variation. Genotypes for the panel of 23 SNPs
were generated for n= 267 horses from six breeds (Arabian,
French Trotter, Mongolian Racing, Quarter Horse, Standardbred,

and Thoroughbred) chosen to represent racing breeds, and
n= 249 horses from eleven breeds (putatively ancestral to
Thoroughbred—Akhal Teke, Egyptian Arabian, Moroccan Barb;
Chinese Mongolian landrace—Baerhu, Baicha Iron Hoof, Keer-
qin, Wushen, Wuzhumuqin; sport horses—Connemara, Irish
Draught, Dutch Warmblood) representing non-racing breeds
(Supplementary Data 16). Additional detail for the breeds is
provided in Supplementary Note 2.

In tests of genetic association, SNPs in nine genes were
significantly (Bonferroni-adjusted P < 3.57 × 10−3) associated
with the racing phenotype (Table 4). Eight were missense variants
predicted to have a moderate effect on the protein and one
(SLC16A1) that introduces a stop codon was predicted to have a
high effect on the protein. We did not expect to identify loss of
function mutations, since we expected here to detect alleles that
are advantageous for exercise. The introduction of a stop codon
may not always disrupt the function of a protein if there is limited
truncation or if there is stop codon read through84.

Biological functions relevant to exercise among genes sig-
nificantly associated with racing. The functional relevance of
this gene set is supported by the integrative analyses in which
three of the genes (KTN1, MYLK2, and SYNDIG1) were enriched
for SNPs among DEGs in the skeletal muscle exercise and
training response. A literature search and review of associated
gene ontology functions, indicated that this set of genes have roles
in muscle (HDAC9, MYLK2), metabolism (FASKD1, G6PC2,
GLB1, SLC16A1) and neurobiological (KTN1, NTM, SYNDIG1)
functions that are linked to exercise-relevant phenotypes.

Table 3 Genomic regions chosen to search for high and moderate effect variants in the whole genome sequence data.

Chr. Region start Region end Region
size (Mb)

Analysis method No. SNPs high
effect MAF ≥ 0.1

No. SNPs mod
effect MAF ≥ 0.1

Candidate gene(s) with
high/mod effect variant

Cohort

1 21680000 23240000 1.56 CSS 2 0 – Racing
1 45340000 46540000 1.20 CSS 0 2 – Racing
1 122120000 122930000 0.81 TR, UE, CSS 1 3 PKM Racing
2 66441005 66747911 0.31 TR 0 2 CBR4 Racing
2 100300000 101780000 1.48 CSS 0 2 INTU Racing
4 50367171 51430398 1.06 UE 0 4 HDAC9 Racing
5 51440000 52880000 1.44 CSS 1 4 SLC16A1 Racing
6 8463018 8667520 0.20 TR, UE 0 0 TUBA4A Racing
7 40440000 42860000 2.42 CSS 0 1 NTM Racing
15 83051411 83375153 0.32 UE 0 4 LPIN1 Racing
16 58089557 58374430 0.28 UE 0 0 – Racing
17 21030000 23270000 2.24 CSS 1 0 KPNA3 Racing
18 48080000 50400000 2.32 CSS 0 5 G6PC2, FASTKD1, PPIG Racing
22 1076610 1464865 0.39 TR 0 2 SYNDIG1 Racing
22 23370000 24400000 1.03 TR, UE, CSS 0 4 MYLK2 Racing
24 3454073 3755465 0.30 TR, UE 0 2 KTN1 Racing
27 38413050 38745592 0.33 TR 0 1 MYOM2 Racing
28 33915186 34121336 0.21 TR, UE 2 1 HMOX1 Racing
4 55163167 56163167 1.00 CSS 0 2 NPY MonRC
5 46453083 49712027 3.26 TR, UE, CSS 0 43 TBX15, ATP1A1 MonRC
7 64386638 65386638 1.00 CSS 1 9 PRCP MonRC
9 77322133 78512097 1.19 TR 0 0 – MonRC
15 11535656 12541448 1.01 UE, CSS 1 25 ANKRD23 MonRC
16 52279295 53369884 1.09 UE 1 20 GLB1 MonRC
16 72225972 73379121 1.15 UE 0 3 PPP2R3A MonRC
20 43088186 44106716 1.02 TR 1 24 VEGFA MonRC
21 3270978 4270978 1.00 CSS 5 59 COMP MonRC
21 19256258 20260886 1.00 UE 0 0 – MonRC
26 16203156 17203156 1.00 CSS 1 12 CXADR MonRC
28 39787330 43768541 3.98 CSS 6 136 SULT4A1 MonRC

Analysis method—rationale for inclusion among search regions from results of either Racing or Mongolian Racing (MonRC) analyses; number of high and moderate (mod) effect variants within the
region; candidate exercise-relevant genes containing high or moderate effect variants.
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Skeletal muscle is a highly plastic tissue that responds to
exercise and training stimuli by increasing muscle mass and
changing fibre type composition with concomitant mitochondrial
functional adaptations85. Here, we identified two genes relevant
to muscle function that were significantly associated with the
racing phenotype, and we consider to be core genes. The HDAC9
gene encodes a protein that inhibits skeletal myogenesis and is
involved in heart development86–89. In Thoroughbred skeletal
muscle HDAC9 is among the top five most significant DEGs
downregulated in the exercise response (log2FC = −2.67, P =
1.21 × 10−20)24. In humans, HDAC9 gene variants are associated
with the maximal oxygen uptake (VO2max) response to training90.
Among the racing breeds, the Thoroughbred had the highest
frequency (0.65) of the A-allele, which was more than twice the
frequency of the allele among the other racing breeds (mean =
0.31) and 3.4× that among the sport horse breeds (0.19). Allele
frequencies for all SNPs in each breed are shown in Supplemen-
tary Data 17.

MYLK2 encodes a myosin light chain kinase (MYL2)
expressed in skeletal muscle. The enzyme has a critical role
in muscle contraction, and functions in neuromuscular
synaptic transmission, skeletal muscle satellite cell differentia-
tion, regulation of muscle filament sliding and skeletal muscle
cell differentiation91,92. MYLK2 was the most significantly
downregulated gene (log2FC = −1.31, P = 1.37 × 10−22)
among the 3,241 DEGs in Thoroughbred skeletal muscle
following exercise and ranked 6th following a period of training
(log2FC = −1.04, P = 1.13×10−6)24, higher than MSTN (14th,
log2FC = −2.56, P = 1.43 × 10−6), a gene with a well-
established functional role in exercise19,29,31,33. In humans,
genetic variants in MYLK are associated with phenotypic
responses to exercise-induced muscle damage93. Here, the
A-allele that was significantly different between racing (0.38)
and non-racing breeds (0.25), had, among the racing breeds,
the highest frequency in Arabian (0.63) and French Trotter
(0.45) and the lowest frequency in Quarter Horse (0.28) and
Standardbred (0.28) (Supplementary Data 17). Based on the
considerable functional evidence, we propose that genetic
variation in HDAC9 and MYLK2 has a critical role in
determining the muscle phenotype of racehorses.

The metabolic properties of skeletal muscle are largely
influenced by the proportion of slow (type I) and fast (type II)
muscle fibres, which are defined by the myosin heavy chain

isoforms and characterised by the different densities and
functional properties of mitochondria94. Within the different
fibre types, the glycolytic and oxidative pathways are tightly
regulated to ensure an adequate supply of ATP to meet energy
demands. The G6PC2 gene encodes a major component of
glycolysis95–97. Protein-coding variants in the gene are associated
with fasting glucose levels in humans and there is strong evidence
that G6PC2 is an effector gene for glucose regulation97. Among
breeds, the G-allele occurred at the highest frequency in
Thoroughbred (0.95) and was lowest in Connemara (0.50). The
glycolytic requirements for high intensity exercise are likely
responsible for the observed variation in this gene among the
breeds. The FASTKD1 and PPIG genes are also located in the
region exhibiting the selection signal for G6PC2. The FAST kinase
domains 1 protein, encoded by FASTKD1, supports mitochon-
drial homeostasis, and has a critical protective role against
oxidant-induced cell death98–101. However, the strongest associa-
tion in racing breeds was with the G6PC2 SNP and its well-
established biological function in the regulation of glucose
suggests that it could underpin the selection signal at this locus.

One of the best characterised genes for racing performance in
Arabian horses is the SLC16A1 gene encoding the solute carrier
family 16 member 1 protein that catalyses the movement of
lactate and pyruvate across the plasma membrane8,9,102. In
humans, genetic variants in the gene are used to predict athletic
performance, in particular high-intensity exercise, and power
ability103,104. Here, we have identified a novel variant that is
predicted to have a major effect on the resulting protein through
the introduction of a stop codon. The value of this variant in
prediction of racing performance among Arabian horses requires
testing in horses phenotyped for economically relevant racing
traits.

Neurobiological functions have regularly featured in equine
exercise transcriptomics and genomics research24,43,105. Here we
identified SNPs in three genes with functions in neurobiology,
KTN1, NTM and SYNDIG1. Of particular note is NTM encoding
neurotrimin, which functions in brain development, regulates
neural growth and synapse formation, and influences learning
and memory106–111. A GWAS in Thoroughbreds previously
identified this locus as the most significantly associated with the
number of racecourse starts44. NTM also ranks among the top 10
genes positively selected during horse domestication112 suggest-
ing that equine neurological systems associated with

Table 4 SNPs significantly associated with the racing phenotype among global breeds.

Chrom. Position Allele 1 F_A F_U Allele 2 CHISQ Unadjusted
P value

Odds Ratios Gene

ECA7 41381993 A 0.2715 0.4980 G 55.94 7.49 × 10−14 0.376 NTM
ECA18 48638568 A 0.1873 0.3956 G 54.56 1.51 × 10−13 0.352 G6PC2
ECA22 1289141 T 0.0414 0.1714 C 46.53 9.02 × 10−12 0.209 SYNDIG1
ECA18 49159216 T 0.4678 0.6741 C 44.25 2.89 × 10−11 0.425 FASTKD1
ECA18 49230205 A 0.5418 0.7117 G 31.40 2.10 × 10−8 0.479 PPIG
ECA4 51109357 G 0.6616 0.8117 A 28.84 7.86 × 10−8 0.454 HDAC9
ECA22 23460297 A 0.3783 0.2541 T 17.90 2.33 × 10−5 1.786 MYLK2
ECA5 52312504 G 0.1184 0.2146 C 17.21 3.34 × 10−5 0.492 SLC16A1
ECA24 3586665 G 0.1816 0.2831 A 14.96 1.10 × 10−4 0.562 KTN1
ECA15 83175651 C 0.0861 0.1586 A 12.72 3.62 × 10−4 0.500
ECA2 101601341 A 0.3783 0.4859 G 12.19 4.82 × 10−4 0.644
ECA28 34013061 G 0.3132 0.2329 C 8.31 3.94 × 10−3 1.502
ECA2 66547160 G 0.1351 0.2033 A 8.31 3.96 × 10−3 0.612
ECA27 38633488 T 0.0947 0.1209 C 1.82 0.178 0.761

SNPs that were significant following Bonferroni correction for multiple testing are annotated with the associated gene name. F_A = frequency of allele 1 in Racing breeds, F_U = frequency of allele 1 in
non-Racing breeds. Racing breeds horses n= 267; non-Racing breeds horses n= 249. Racing breeds—Arabian, French Trotter, Mongolian Racing, Quarter Horse, Standardbred, Thoroughbred; non-
Racing Breeds—Baerhu, Baicha Iron Hoof, Keerqin, Wushen, Wuzhumuqin, Akhal Teke, Egyptian Arabian, Moroccan Barb, Connemara, Irish Draught, Dutch Warmblood. RS codes for SNPs are provided
with additional details in Supplementary Data 15.
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domestication may overlap with adaptive traits that are required
for racing. Here, the NTM SNP was the most significantly
associated (P = 7.49 × 10−14) with the racing breeds and among
all breeds the highest frequency of the racing allele was in the
Thoroughbred (0.89).

In humans, KTN1 gene variants are strongly associated with
KTN1 gene expression in the putamen and the volume of the
putamen113, a region of the forebrain belonging to the basal
ganglion that influences motor behaviours including motor
planning and execution, motor preparation, amplitudes of
movement and sequences of movement113–120. Here, the KTN1
G-allele was <1% in Thoroughbreds but had an average frequency
of 0.22 in the other racing breeds, was 0.34 in the ancestral breeds
and 0.21 in the sport horse breeds. Selection for the racing allele
in breeds other than the Thoroughbred may be valuable in
improving locomotor functions critical to racing. For SYNDIG1,
the product of which regulates the development of excitatory
synapses121–123, we observed that selection may already have
fixed the exercise-favoured variant in racing breeds; the T-allele
was absent in Thoroughbred, Arabian and Akhal Teke and was
observed at a low frequency in the other breeds, with the highest
occurrence in Connemara (0.29) and Irish Draught (0.25).

Genes associated with racing in Mongolian horses. Considering
the difference in the selection signals profile of the Mongolian
Racing horses (compared to the results from the Racing breeds),
we also performed tests of genetic association for eight SNPs in a
cohort of Mongolian horses selected by herdsmen for racing by
comparing the genotypes to a set of Chinese Mongolian horses
that are not used for racing (Supplementary Data 16). The GLB1
SNP was significantly (Bonferroni-adjusted P < 0.006) associated
with the racing phenotype among Mongolian horses (Table 5).
The protein encoded by GLB1, beta-galactosidase, has a role in
several metabolic pathways and is the most widely used bio-
marker for senescent and aging cells124. There are a number of
GLB1 related disorders125 including a disruption of normal ske-
letal morphologies126 and cardiomyopathies.

Genes associated with racing performance in Thoroughbred
horses. To test for genetic association with racing traits among
Thoroughbreds, we partitioned a large archive of samples
(n= 1134) into three groups: horses classified as elite, horses that
had raced but had never won a race, and horses that were unraced
(Supplementary Data 18). Among a cohort of horses that had
raced in North America, the MYLK2 SNP was significantly
(P < 0.005) associated with elite racing performance, but it was
not associated with the trait among Australian (P= 0.43) or
European (P= 0.47) horses (Supplementary Data 19). We have
previously observed regional-specific variation for racing perfor-
mance among Thoroughbreds23, which may be due to different

selection pressures for the various dynamics in each racing eco-
system. Among European Thoroughbreds, the NTM SNP was
suggestive of association with the occurrence of a racecourse start
(P= 0.01), and although it did not meet the threshold for sig-
nificance following correction for multiple testing, the occurrence
of this locus in a previous GWAS44, and the observation of the
highest frequency of the SNP among Thoroughbreds, strongly
implicates NTM as an economically important gene in the
Thoroughbred.

Conclusions
Adaptation driven by strong directional selection at key loci is
likely to be particularly important in livestock species that are
subject to management-based selection decisions37,127. Here, we
provide evidence for major-effect variants in shaping the racing
phenotype in horse populations. We have demonstrated that
allelic variants in a core set of fundamental exercise-relevant
genes segregating among horse populations likely underpin an
array of adaptations required for racing. Genes including G6PC2,
HDAC9, KTN1, MYLK2, NTM, SLC16A1 and SYNDIG1, with
roles in muscle, metabolism, and neurobiological functions,
appear to be central to shaping the racing phenotype in horses.
These results are likely to inform genome-enabled improvement
of horse racing populations and highlight genes of interest for
athletic traits in other species for which exercise adaptation is
desired.

Methods
Ethics statement. Samples genotyped in this study were collected with informed
owner’s consent for commercial genetic testing and approved for use in research.
As such, institutional animal research ethics was not required. Approval for col-
lection and the movement of genetic material for the whole genome sequencing
analyses was granted by Inner Mongolia Agricultural University Animal Research
Ethics Committee and Mongolian University of Science and Technology.

Selection signals analysis samples. Mongolian Racing: Genotypes were gener-
ated for n= 24 Mongolian Racing horse samples using the GGP Equine SNP70
genotyping array and were used as the primary Mongolian Racing cohort (Sup-
plementary Data 2). Samples were collected in Khentii province, Mongolia, in 2018.
No pedigree/identification or racing performance data was available for the horses.
Horses were selected for sampling based on the herdsmen’s knowledge of relat-
edness, from herds of horses bred and owned by the Ajnai Sharga Horse Racing
team. Mongolian populations that had been previously genotyped4 were used for
the breed-specific PCA and included horses from the Abaga Black, Baicha Iron
Hoof, Sanhe, Wushen and Wuzhumuqin populations.

Arabian: Genotypes were generated for n= 30 Arabian horse samples using the
GGP Equine SNP70 genotyping array and were used for the selection signals
analysis only. Samples were collected in United Arab Emirates in 2014. All horses
were bred for racing competitions. No additional pedigree/identification or racing
performance data was available for the individual horses. To confirm the racing
phenotype for this sample, a PCA was performed using this sample and an
additional n = 152 Arabian horses that had been previously genotyped7 and had
recorded performance uses (racing, endurance, show). The sample of horses
genotyped in this study was confirmed to be distributed in the PCA space shared
predominantly with racing Arabians (Supplementary Fig. 7). For the breed-specific

Table 5 SNPs significantly associated with the racing phenotype among Mongolian horses.

Chrom. Position Allele 1 F_A F_U Allele 2 CHISQ Unadjusted P value Odds ratios Gene

ECA16 52850203 G 0.6556 0.4625 A 9.77 2.00 × 10−3 2.212 GLB1
ECA15 12036913 C 0.1413 0.2563 T 5.04 2.50 × 10−3 0.478
ECA16 72765824 G 0.1957 0.1281 A 2.43 0.119 1.656
ECA4 55899514 G 0.6667 0.4213 C 1.44 0.231 2.747
ECA7 64406448 A 0.1304 0.1125 G 0.21 0.650 1.183
ECA26 16940454 A 0.1000 0.0917 G 0.05 0.817 1.101
ECA21 3979432 T 0.0978 0.0924 C 0.02 0.880 1.065
ECA5 49201314 A 0.4222 0.4174 C 0.01 0.936 1.020

The SNP that was significant following Bonferroni correction for multiple testing is annotated with the associated gene name. F_A = frequency of allele 1 in Mongolian Racing, F_U = frequency of allele 1
in Chinese Mongolian breeds. Mongolian Racing horses n = 46; non-Racing Chinese Mongolian breeds horses n = 121. RS codes for SNPs are provided with additional details in Supplementary Data 15.
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PCA (Supplementary Fig. 2) Arabian horses from different geographic regions
were used. Although there are numerous different subtypes of Arabian horses
based on geographic origin and performance use, for simplicity, the racing Arabian
horses used in this study are referred to as Arabian. Additional detail for the breed
is provided in Supplementary Note 2.

Thoroughbred: The Thoroughbred cohort (n= 36) had been previously
genotyped5 and included horses originating in USA and Europe (Supplementary
Data 2).

Racing breeds: For the CSS analysis the Mongolian Racing, Arabian and
Thoroughbred populations described above were used as the Racing cohort.

Non-Racing breeds: Horses representing 21 diverse horse breeds that have not
been bred for racing were used as the comparator cohort to represent non-Racing
breeds for the CSS analyses. Samples had been previously genotyped5 and included
Akhal Teke (n = 20), Belgian (n = 30), Clydesdale (n = 24), Caspian Pony (n =
16), Exmoor (n = 24), Fell Pony (n = 21), Franches-Montagnes (n = 19),
Hanoverian (n = 15), Miniature (n = 25), Mangalarga Paulista (n = 14), Morgan
(n = 43), New Forest Pony (n = 15), Norwegian Fjord (n = 21), North Swedish
Horse (n = 19), Percheron (n = 42), Peruvian Paso (n = 21), Paint (n = 25),
Saddlebred (n = 25), Shetland (n = 27), Shire (n = 23), Tuva (n = 15)
(Supplementary Data 2).

Whole-genome resequencing samples. Horses from breeds indigenous to
Mongolia and China, and horses from breeds imported to China were used for
generation of whole-genome sequence (WGS) data. Samples from indigenous
horses (n = 50) were obtained from rural localities across China and Mongolia
(Supplementary Fig. 6). Additional samples (n = 20) were collected from Akhal-
Teke (n = 5), Arabian (n = 5), Shetland Pony (n = 5), Friesian (n = 2), Clydesdale
(n = 2) and Russian Draft (n = 1) (Supplementary Data 11). No pedigree infor-
mation was available for these horses, but sampling of related animals was avoided
based on the information provided by horse owners and local herdsmen.

Validation of association with racing samples. A set of breeds was genotyped for
the SNP panel for tests of association with racing and to determine the prevalence
of the racing alleles in racing (trotting – French Trotter n = 44, Standardbred
Trotter n = 41; sprinting – Quarter horse, n = 23; endurance – Arabian, n = 63
and endurance/sprint – Thoroughbred, n = 50), sport horse (Dutch Warmblood n
= 42, Irish Draught n = 28, Connemara Pony n = 18) and putatively ancestral to
Thoroughbred (Akhal Teke n = 12, Moroccan Barb n = 17, Egyptian Arabian n =
11) populations (Supplementary Data 16).

A set of n = 46 Mongolian horses, sampled in Khentii Province, that were
among a herd of horses bred for racing and five Chinese Mongolian breeds not
known to be selected for racing (Baerhu n = 15, Baicha Iron Hoof n = 21, Keerqin
n = 22, Wushen n = 15, Wuzhumuqin n = 48) were used for validation of the SNP
panel for Mongolian Racing.

A set of n = 1134 Thoroughbreds partitioned into animals that had (1) won an
elite (Group or Listed) race, (2) raced but never won, and (3) never raced, were
used for validation of the SNP panel among Thoroughbred racehorses
(Supplementary Data 18). The horses were registered Thoroughbreds born in Great
Britain and Ireland, Australia, and the USA.

Genotype QC and datasets. In total, SNP array-derived genotypes for n = 574
horses from 24 distinct populations (Supplementary Data 2) were used, including
n = 30 Arabian and n = 24 Mongolian Racing horses that were genotyped using
the GGP Equine SNP70 genotyping array in this study. The n = 30 Arabian horses
were selected from a set of n = 70 horses based on limited relationship (π̂ < 0.25).
Genotype data (50,042 autosomal SNPs generated using the Illumina EquineSNP50
genotyping array) for n = 520 horses were accessed from www.animalgenome.org/
repository/pub/UMN2013.01255 including Thoroughbred and horses representing
populations that were not specifically bred for racing (non-Racing). These data
were merged with genotypes generated in this study and SNP QC and filtering were
performed across populations on the merged data set. Individual SNPs with >10%
missing data and MAF < 0.01 were removed, resulting in 36,767 SNPs for analyses.

Genotypes for n = 30 Arabian horses genotyped in this study were combined
with publicly available genotypes for n = 378 Arabian horses obtained from the
Mendeley Data resource (https://doi.org/10.17632/mkk5khxrbp.3)7. After removal
of individual SNPs with >10% missing data and MAF < 0.01, 35,292 SNPs
remained for PCA analysis.

Genotypes for n = 24 Mongolian Racing horses genotyped in this study were
merged with publicly available genotypes for n = 100 Chinese Mongolian horses
obtained from the Open Science Framework (https://osf.io/2xvqf/quickfiles)4. After
removal of individual SNPs with >10% missing data and MAF < 0.01, 60,994 SNPs
remaining for PCA analysis.

Principal component analysis. To visualise genetic relatedness among the
populations, principal component analysis (PCA) was performed using smartPCA
from the EIGENSOFT package (version 4.2)128. One outlier (Shire, ID:SH144) was
identified and excluded from further analyses. The outlier was separated from the
breed cluster and had also been identified as an outlier in the study from which the
data were obtained5.

Admixture analysis among Arabian and Mongolian Racing populations. For
the analysis of population substructure, model-based clustering was performed
using the software package ADMIXTURE129. The model assigns ancestry based on
a predefined number of K ancestral populations. Individuals are assigned to K
clusters based on allele frequencies and the proportion of ancestry from each
population is estimated. The analysis was performed for K ranging from 2–6.
Unsupervised modelling was used to predict allele frequencies in four ancestral
genetic lineages (K = 4) and each animal’s genome was partitioned and pro-
portionally assigned to one of the four lineages. The outputs from the analysis were
visualized using pophelper 2.3.1130.

Identification of selection signals. Composite selection signals (CSS)
analyses39,131,132 were performed for four different comparison sets: (1) Racing (n
= 90; n = 30 Arabian, n = 36 Thoroughbred, n = 24 Mongolian Racing) versus
non-Racing breeds (n = 483); (2) Arabian (n = 30) versus all other breeds (n =
544); (3) Thoroughbred (n = 36) versus all other breeds (n = 537); (4) Mongolian
Racing (n = 24) versus all other breeds (n = 549). Details for the comparator
cohorts are provided in Supplementary Data 2.

The CSS approach is among several composite approaches to successfully
identify genes under selection for monogenic and polygenic traits in livestock39,133.
CSS uses fractional ranks of constituent tests allowing a combination of the
evidence of historical selection from different population genetic tests of selection.
We used the fixation index (FST), the change in selected allele frequency (ΔSAF)
and the cross-population extended haplotype homozygosity (XP-EHH) tests
combining each test statistic into one composite CSS statistic for each SNP. FST
statistics were computed as the differentiation index between the target population/
s of interest (as selected) and the contrasting/reference population/s (as non-
selected), and the XP-EHH and ΔSAF statistics were computed for the selected
population/s against the reference population (as non-selected).

The CSS statistics were computed as follows: For each constituent method, test
statistics were ranked (1, …, n) genome-wide on n SNPs. Ranks were converted to
fractional ranks (r´) (between 0 and 1) by 1/ (n + 1) through n / (n + 1). Fractional
ranks were converted to z-values as z = Φ−1(r´), where Φ−1(⋅) is the inverse
normal cumulative distribution function. Mean z scores were calculated by
averaging z-values across all constituent tests at each SNP position and P-values
were directly obtained from the distribution of means from a normal N (0, m–1)
distribution where m is the number of constituent test statistics. Log-transformed P
values (–log10 of P values of the mean z-values) were declared as CSS. To identify
significant selection signals CSS scores were plotted against the genomic positions
and the individual test statistics were then averaged across SNPs within 1 Mb
sliding windows to reduce spurious signals (smoothed CSS score). Clusters of >5
SNPs among the top 1% SNPs were defined as signals of selection.

Integration of SNPs with skeletal muscle gene expression data. To integrate
the SNP data arising from the CSS analyses with gene sets generated from func-
tional genomics data analyses24 we used an R software package, gwinteR77 as
follows: (1) a set of significant and non-significant SNPs (named the target SNP set)
was collated across all genes in each gene set at increasing genomic intervals
upstream and downstream from each gene inclusive of the coding sequence (e.g.,
±10 kb, ±20 kb, ±30 kb… …±100 kb); (2) for each genomic region, a null dis-
tribution of 1000 SNP sets, each of which contains the same number of total
significant and non-significant combined SNPs as the target SNP set, was generated
by resampling with replacement from the search space of the total population of
SNPs in the CSS SNP data set; (3) the nominal (uncorrected) CSS P values for the
target SNP set and the null distribution SNP sets were converted to local FDR-
adjusted P values (Padj.) using the fdrtool R package (version 1.2.15)134; (4) to test
the primary hypothesis for each observed genomic interval target SNP set a per-
muted P value (Pperm.) was generated based on the proportion of permuted random
SNP sets where the same or a larger number of SNPs exhibiting significant q-values
(e.g. q < 0.05 or q < 0.10) were observed; (5) a summary output file of all SNPs in
the observed target SNP set with genomic locations and q-values was generated for
subsequent investigation.

For the Racing versus non-Racing CSS data set, there were 36,768 autosomal
SNPs with nominal P values that could be used for the integrative genomics
analyses. For the integrative analyses of functional genomics outputs with the CSS
data, two different subsets of differentially expressed genes (DEGs) in skeletal
muscle were used: 1) trained rest (TR) and 2) untrained exercise (UE), representing
the Thoroughbred skeletal muscle transcriptomic response to training (TR) and
exercise (UE)24. The gene sets that were used were filtered with Padj. <10−4 (TR)
and <10−12 (UE) to ensure manageable computational loads, resulting in 230 (TR)
and 407 (UE) input genes on autosomal chromosomes for integration with the CSS
SNPs. The input gene sets can be found in Supplementary Data 5 and
Supplementary Data 6.

For the Mongolian Racing versus other breeds CSS data set, there were 30,003
autosomal SNPs with nominal P values that could be used for the integrative
genomics analyses. The same DEG lists were used for the integrative analyses.

Whole genome resequencing sample collection, DNA extraction, and
sequencing. Blood samples were collected from n = 70 individuals comprising
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horses indigenous to Mongolia and China and imported horse breeds. Genomic
DNA was extracted following the standard phenol-chloroform extraction proce-
dure. For genome sequencing, a total amount of 1.5 μg of genomic DNA from each
sample was used to construct a library with an insert size of ~350 bp. Paired-end
sequencing libraries were constructed according to the manufacturer’s instructions
(Illumina Inc., San Diego, CA, USA). The DNA sample was fragmented by soni-
cation to a size of 350 bp, then DNA fragments were end polished, A-tailed, and
ligated with the full-length adapter for Illumina sequencing with further PCR
amplification. PCR products were then purified, and libraries were assessed for size
distribution using the Agilent 2100 Bioanalyzer and quantified using real-time PCR
and sequenced on the Illumina HiSeq PE150 platform (Illumina Inc.).

Whole genome resequencing quality control. In total ~97 Gb raw sequence data
was generated for each sample with the quality of the bases 96% and 90.92% for
≥Q20 and ≥Q30, respectively. Approximately 652Mb clean paired-end reads with
30× coverage per horse (24–36×) were retained after removing low quality reads
(Supplementary Data 12). Reads were removed with ≥10% unidentified nucleotides
(N); >10 nt aligned to the adaptor, allowing ≤10% mismatches; >50% bases having
phred quality <5; and putative PCR duplicates generated in the library construction
process, which mainly result from base-calling duplicates and adaptor
contamination.

Whole genome resequencing reads mapping, SNP and INDEL calling. The
remaining high quality paired-end reads were mapped to the horse EquCab 3.0
reference genome using BWA (Burrows-Wheeler Aligner) (Version: 0.7.8) with the
command ‘mem -t 4 -k 32 –M’135. In order to reduce mismatch generated by PCR
amplification before sequencing, duplicated reads were removed using SAMtools.
After alignment, SNPs were called on a population scale using a Bayesian approach
as implemented in the package SAMtools136. Genotype likelihoods from reads for
each animal at each genomic location, and the allele frequencies in the sample were
then calculated using a Bayesian approach. The ‘mpileup’ command was used to
identify SNPs with the parameters as ‘-q 1 -C 50 -t SP -t DP -m 2 -F 0.002’. Then,
to exclude SNP calling errors caused by incorrect mapping or indels, only high-
quality SNPs (coverage depth ≥3 and ≤50, RMS mapping quality ≥20, maf ≥0.05,
miss≤0.1) were retained for subsequent analysis.

SNP calling was also performed using GATK v4.1.2.0137. The process was as
follows: (1) HaplotypeCaller generates gvcf files for each animal; gatk
HaplotypeCaller -genotyping-mode DISCOVERY -ERC GVCF. (2) GATK
CombineGVCFs combines all the generated gvcf files. (3) GATK GenotypeGVCFs
performs the genotyping on the combined vcf file. (4) GATK SelectVariants
separates the SNPs and indels. A summary of the SNPs and indels called in the
70 samples is provided in Supplementary Data 13.

GATK SelectVariants was used to select a common subset of variants between
unfiltered GATK and SAMtools calling result. Approximately 2 million horse SNPs
(MNEc2M) available in the public repository (www.animalgenome.org/repository/
pub/UMN2018.1003) were used for variant calling validation. A summary of the
validation of SNPs called in this study and MNEc2M SNPs is provided in
Supplementary Data 14.

Similar to SNP calling, the calling of indels was conducted using SAMtools with
minimum depth ≥3 and GQ >20, and only indels <50 bp were retained.

Prioritisation of novel variants. The functional effects of the variants were pre-
dicted according to the Ensembl (version 101) annotation of EquCab3. Functional
consequences of the variants (including SIFT scores138 for missense variants) were
predicted with the Ensembl Variant Effect Predictor (VEP, version 91.3139).

These data formed the reference files that were screened for putative causative /
functional variants in regions / genes of interest. Prioritisation of genes and
variants was performed with a particular focus on (1) predicted effect of the
variant, where ‘high’ effect was selected where possible, (2) biological function of
the gene relevant to exercise, (3) minor allele frequency ≥0.1, and (4) high quality
score (most had QUAL= 999)140. All genes were considered in the regions
demarked by the CSS analyses, but generally only DEGs were considered in regions
(±100 kb from gene start/end) demarked by the integrative analyses. Variants were
only considered if they were in known genes. Predicted ‘high’ effect variants
included the annotations splice_acceptor_variant&intron_variant,
frameshift_variant, splice_acceptor_variant, and stop_gained, and predicted
‘moderate’ effect variants included the annotations missense_variant and
inframe_deletion.

Matrix-associated laser desorption/ionization time-of-flight mass spectro-
metry (MALDI-TOF MS) assay design for SNP genotyping. Assay development
and genotyping was performed at Neogen Genomics (Lincoln, Nebraska, USA)
using the MassARRAY platform and iPLEX GOLD chemistry according to the
manufacturer’s protocol (Agena Bioscience, San Diego, California, USA). Agena
Design Suite software developed by the manufacturer was utilized to design mul-
tiplex assays. The variants of interest were among a larger set of 150 markers of
interest (SNPs, MNPs) (designed for other analyses not included here) that were
split into four separate sets of 48, 47, 35, and 20 markers each. The four multiplex

assays were run on the genomic DNA provided for the animals, data generated,
and quality check metrics applied.

Tests of genetic association. SNP genotype data for all samples were merged and
converted to Plink .bed format. The data were analysed using PLINK 1.9141. SNPs
with a call rate <80% and samples with a call rate <90% were excluded from the
analysis. Case-control tests of genetic association were performed to compare the
racing breeds horses n= 267 to non-Racing breeds horses n= 249 and to compare
the Mongolian Racing horses n= 46 to non-Racing Chinese Mongolian breeds
horses n = 121 (Supplementary Data 16). The Thoroughbred cohort was divided
by geographic region, Europe, Australia, and North America. The quantitative trait,
number of racecourse starts, and the binary trait, Elite vs non-Elite, were tested for
each cohort with sex included as a co-variate (Supplementary Data 18).

Statistics and reproducibility. The composite selection signals (CSS) approach
which combines the statistical outputs from the FST, ΔSAF and XP-EHH tests into
one composite statistic for each SNP was used for the identification of selection
signals. Significance was assigned to SNPs within clusters of >5 SNPs among the
top 1% of CSS scores. The reproducibility of the results is demonstrated by the
identification of several selection signals in the Thoroughbred that were previously
identified using different statistical methodologies (di, H, H12, and Tajima’s D)5,7.
Overlaps with reported selection signals in other horse breeds are shown in Table 1.

The R package gwinteR was used for the integration of SNPs with DEGs. A set of
significant and non-significant SNPs from the CSS analysis was collated across all
genes in the DEG gene set at increasing genomic intervals (e.g., ±10 kb, ±20 kb,
±30 kb……±100 kb) upstream and downstream from each gene. A null distribution
of 1,000 SNP sets, each of which contains the same number of total significant and
non-significant combined SNPs as the target SNP set, was generated for each genomic
region by resampling with replacement from the search space of the total population
of SNPs in the CSS data set. The nominal (uncorrected) CSS P values for the target
SNP set and the null distribution SNP sets were converted to local FDR-adjusted P
values (Padj.) using the fdrtool R package (version 1.2.15)134. To test the primary
hypothesis for each observed genomic interval target SNP set a permuted P value
(Pperm.) was generated based on the proportion of permuted random SNP sets where
the same or a larger number of SNPs exhibiting significant q-values (e.g. q < 0.05 or q
< 0.10) were observed. A summary output file of all SNPs in the observed target SNP
set with genomic locations and q-values was generated.

Tests of genetic association were performed by comparing allele frequencies in a
chi-square (1df) test for the binary traits, and a Wald test for the quantitative trait.
Sex of the horse was included as a covariate. P-values were adjusted for multiple
testing by applying a Bonferroni correction. To demonstrate the reproducibility of
the results, samples were independent of the discovery sample sets (CSS and WGS),
and for the association with racing, racing breeds (Quarter Horse, French Trotter,
Standardbred) that were not included in the discovery sample set were included in
the racing cohort.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
SNP array derived genotypes generated in this study have been deposited in the
European Variation Archive with the accession IDs PRJEB55561 (Project), ERZ12817059
(Mongolian horse analysis), and ERZ12817060 (Arabian horse analysis). The whole
genome sequence data have been deposited in the Sequence Read Archive with the
BioProject ID: PRJNA867509. The source data for Fig. 2 is available at Source data is
available at https://doi.org/10.5061/dryad.g79cnp5sm. The SNP genotype data generated
for the validation study are subject to the following licenses/restrictions: The phenotype
and genotype data are the property of Plusvital Ltd. and subject to a confidentiality
agreement with the animal owners.
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