ACCEPTED VERSION

David Adamson and Adam Loch Overcoming deterministic limits to robustness tests of decision-making given incomplete information: the state contingent analysis approach Water Economics and Policy, 2022; 8(4): 2240011

Electronic version of an article published as Water Economics and Policy, 2022; 8(4): 2240011. DOI: http://dx.doi.org/10.1142/S2382624X22400112

© World Scientific Publishing Company. https://www.worldscientific.com/worldscinet/ijcm

PERMISSIONS

http://www.worldscientific.com/page/authors/author-rights

Author accepted manuscript

3. As authors of a journal article, (other than authors mentioned above), you may post the accepted author manuscript on your personal website, your company or institutional repository, not-for-profit subject-based preprint servers or repositories of your own choice or as stipulated by the Funding Agency and may share the article in private research groups including those on SCNs which have signed up to the STM sharing principles, after an embargo of 12 months from the online publication date of the Version of Record.

The private research groups must be formed by invitation for a specific research purpose and be of a size that is typical for research groups within the discipline. Sharing of articles must be limited to members of the group only. The SCNs which have signed up to the sharing principles are required to provide COUNTER compliant usage data to World Scientific by agreement.

Please provide the following acknowledgement along with a link to the article via its DOI if available:

• Electronic version of an article published as [Journal, Volume, Issue, Year, Pages] [Article DOI] © [copyright World Scientific Publishing Company] [Journal URL]

The <u>Digital Object Identifier</u> (<u>DOI</u>) of your article can be found on the relevant webpage of WorldSciNet where your article is posted.

The above permissions apply to authors whose articles are to be published by World Scientific and authors who have purchased a copy or received a complimentary copy of their published article.

This policy does not apply to pay-per-view customers and subscribers, who should adhere to their respective agreed policies

26 March 2024

Overcoming deterministic limits to robustness tests of decision-making given
 incomplete information: the state contingent analysis approach

3 Adamson, David[†] and Loch, Adam^{†*}

- [†] Centre for Global Food and Resources, The University of Adelaide, Adelaide, South Australia,
 5005
- 6 * Corresponding author: Adam Loch <u>adam.loch@adelaide.edu.au</u> | P: +61 8 8313 9131
- 7 ORCID: David Adamson (0000-0003-1616-968X); Adam Loch (0000-0002-1436-8768)

8 Abstract

9 Incomplete information may result in multiple factors combining to jointly affect the consequences of 10 decision-making. The typical response to incomplete information has been tests of robustness and a 11 fixed decisions' capacity to withstand a wide variety of future conditions. But what of reversed contexts, 12 where the revealed future alters decision-making via experience, learning and innovation such that the 13 decision itself changes? In this paper we contrast a commonly applied expected value robustness metric 14 to state contingent analysis which allows for learning and innovation. State contingent analysis views 15 robustness as how decision-makers achieve profits across all future states by reallocating resources ex 16 post to maximize payoffs and/or minimize losses via outputs that are conditionally specific. 17 Consequently, the state-contingent approach enables researchers to identify the benefits and constraints 18 of resource reallocation-rather than fixed decision-making-over plausible scenarios. Within SCA, 19 scenarios can thus be uncoupled from the historical averages to explore rare events, even if never before 20 experienced, including thin- and fat-tailed probability distribution outcomes and their impact on 21 decision-making, innovation and future solutions. A case study assessment of water resource 22 management in a large river basin provides the basis for our comparison. We find that expected value 23 models mask innovation and adaptation reactions by decision-makers in response to external stimuli 24 (e.g., increased droughts) and under-represent water reallocation outcomes. Conversely, state contingent 25 models represent and report decision-maker reactions that can be more readily interpreted and linked to 26 stimuli including policy interventions, expanding the study of complex human-water systems.

- 27 Key words: state contingent, robustness tests, decision-making, water, risk
- 28 JEL codes: D81, Q25, Q54

29 Key Points:

30

31

- Current robustness tests of decision-making do not allow for feedback meaning innovation and modelling adaptation responses are constrained
- Adaptation to climate change under policy design, assessment and modification requires
 effective modelling approaches reflecting innovation/non-deterministic pathways
- We suggest state contingent analysis as a modelling alternative which better illustrates learning and the need for decoupled plausible scenarios in the climate and water policy space

36 Acknowledgments, Samples, and Data

There are no conflicts of interest to declare. Thanks are extended to Nikki Dumbrell and Liam Wagner for helpful comments during the preparation of this work. Collaborative funding for this paper was provided by an ARC DECRA Grant DE160100213 *Optimising National Benefits from Restoring Environmental Water Flows*, and an ARC DECRA Grant DE150100328 *Transaction costs in Murray-Darling Basin water reform*. Full datasets are available online at http://www.uq.edu.au/rsmg/

43 **Declarations:** None applicable

44 Introduction

45 In the long-run everything changes but how that will occur, and how individual decision-makers with flexible options may respond to change options, is yet to be revealed. Climate change is a 46 47 prime example (Kandlikar, Risbey, & Dessai, 2005) where future water resources will change 48 based on probabilistic (risky) and non-probabilistic (uncertain) outcomes that may be difficult 49 to accurately define and quantify for relevant scientific and social factors from a global to local 50 scale. Where incomplete information is part of the quantitative calculation researchers have 51 come to rely on expected outcomes to system changes as a basis for decision-making (McPhail 52 et al., 2018). However, over long time horizons (e.g. 70-100 years) our capacity to combine 53 multiple factors is especially challenging (Maier et al., 2016). This has led researchers to adopt 54 processes capable of identifying *plausible* future scenarios without necessarily ranking their likelihood (Döll & Romero-Lankao, 2017). As pointed out by several studies (see for example 55 Herman, Reed, Zeff, & Characklis, 2015; Kwakkel, Eker, & Pruyt, 2016), this approach has 56 57 resulted in tests of decision robustness in the face of incomplete information via alternative 58 metrics, such that the chosen solution will withstand a wide variety of outcomes (i.e., robustness or resilience to change). However, this represents non-adaptation to emerging realities. In other 59 60 words, a decision-maker maintains their adopted solution no matter the realized future outcomes. While applicable for some large-scale investments, this approach may not represent 61 62 how *individuals* with flexible choices respond to protect their capital.

63 Robustness metric calculation involves specifying alternative solutions (e.g. policy 64 options), performance outcomes (e.g. minimum cost), and plausible future conditions/scenarios 65 under which the solution/performance interaction will occur. While iterative processes to redesign a solution may be undertaken to improve robustness, it will be conditional upon how 66 the future unfolds. But the ultimate aim is to define and test how expected consequences related 67 68 to the selected solution and/or to minimize any undesirable outcomes (Kwakkel et al., 2016). Robustness metrics commonly applied include i) expected values of performance across a range 69 70 of scenarios, ii) satisficing scenarios with acceptable performance relative to thresholds, iii) regret-based differentials between selected option performance given plausible future outcomes 71 72 and the best possible option for those conditions, and iv) higher-order moments such as variance 73 and skewness that inform performance across multiple scenarios. All of these metrics reflect 74 varied levels of risk aversion, and differ in how they define and deal with robustness (McPhail 75 et al., 2018).

76 However, when decision-makers respond to incomplete information via adopting flexible 77 management solutions surely this differs from existing fixed-solution choice robustness metric 78 calculations. That is, where revealed states of nature affect decision-making via feedback or 79 adaptation at local/small-scale levels, Ben-Tal et al.'s (2009) deterministic and set-based factors 80 which define the state of the world must also change. Any movement away from set paths and historic values increases the complexity of factors to derive metrics for, and incorporate into, 81 82 robustness tests. This is because complex systems may react to external stimuli, especially when 83 decision innovation is supported over routine choices (Jean-Paul Chavas & Nauges, 2020; Dow, 84 2020). In such contexts learning and innovation is not only expected for traditional perspectives 85 of robustness or resilience, it is also more likely where decision-makers regularly adapt (e.g. 86 operational or strategic choices versus long-term infrastructure or hydrological investments). Learning and adaption will also depend on individual experience and recognition by each state 87 88 of nature (Goldstein & Gigerenzer, 2002). A critical example of these adaptation concepts is 89 water use and management given common variability in supply/demand and a significant connection to human and natural systems. Thus, where information on complex economic,
 social and physical environments is incomplete we may need to study human-water systems in
 more general and alternative ways to improve our explanatory and scenario development

93 capability (Sivapalan et al., 2014).

94 This is because complex interrelated systems provide scope for unintended consequences 95 to both public and private decision-making (Dow, 2020). For example, Pindyck (2011) and 96 Quiggin (2019) describe the relevance of correctly identifying and describing impacts of thin-97 or fat-tailed probability distributions which drive different decision solutions and performance 98 objectives—and ultimately a cumulative risk-sharing utility (Quiggin, 1982). In such cases, 99 information about distribution tails for key variables should be quantified or assigned a level of 100 confidence (Mastrandrea et al., 2010) to ensure the data is taken into account (e.g. separately 101 defined drought states) including measures that separate dispersion and means to provide 102 valuable trade-off information (Kwakkel et al., 2016). Thus, when modelling new pathways 103 that stem from innovation to decision-maker routines it will be necessary that the role of 104 institutions, policy-makers and any firm/household decision-makers be included (Quiggin, 105 2019) such that public/private investment decisions can be pivoted to effectively target, mitigate, 106 prevent or adapt to future climate change shocks (Mazzucato, 2013); currently the tails of the 107 distribution.

108 In this paper we examine an additional robustness metric model that allows the study of 109 reversed interactions between revealed states of nature and altered decisions; the state 110 contingent analysis (SCA) approach. The key to SCA is that it separates the future state signal from the response to that future state, allowing for profit maximizing/loss minimizing outcomes 111 112 to be determined from alternative individual management responses (i.e. reallocation of inputs). 113 SCA assumes that we can completely describe plausible futures into a set of mutually exclusive 114 states of nature. For example, in the case of this paper we know that future water supply can 115 either be what we have expected over the long run (i.e. normal), greater than anticipated (i.e. 116 wet); or less than we require (i.e. dry). While the decision-maker may have some awareness of 117 the frequency of each state of nature, they do not have the ability to influence which state occurs 118 However, for each state of nature, we can describe a set of management options that require a 119 set of inputs, and each management strategy provides a state-described outcome. Therefore, 120 once the state is revealed, decision-makers have complete information on how to respond (Chambers and Quiggin 2000). 121

122 In SCA modelling robustness is viewed as how decision-makers adapt to conditions by 123 reallocating resources, maximizing payoffs (or minimizing losses) in response to state 124 outcomes due to inductive reasoning, or experiencing the failure of existing routines and a need 125 to innovate in response (Grant & Quiggin, 2012). When we understand the payoffs over 126 different states of nature we are better placed to identify the benefits over the plausible scenarios 127 (Arrow, 1953) and can incorporate states of nature based on thin- or fat-tailed conditions. We 128 then have the capacity to explore how management solutions can be designed to respond to 129 known state of nature frequencies, and explore how new solution decisions change in response 130 to external stimuli and altered reallocation or payoffs. This capacity then also allows for the 131 payoff of current and future strategies to be explored when states alter, or new states that have 132 not been previously experienced come to fruition. Following Goldstein and Gigerenzer (2002), 133 learning is state dependent and representable through the introduction of an error term defining 134 a stochastic range. As experience increases, we can reduce the size of the error term, and this 135 represents learning and adaption.

Having detailed the SCA approach we then compare its results to that of a common robustness metric in the literature, the expected value (EV) method, and evaluate the insights

138 these alternative approaches provide for state of nature drivers on learning/innovation outcomes 139 in decision-making. This process allows us to answer three questions. First, is it possible to 140 adapt the perfect foresight SCA model used by Adamson et al. (2009) through an incorporation 141 of stochastic bounds to represent incomplete information problems such as climate change 142 adaptation, and test robust decision-making? Second, if this is possible, what can we learn from comparing stochastic bounded SCA model results to perfect foresight EV models of how 143 144 decision-makers' may innovate/learn to reallocate water resources in response to future climate 145 change? Third, what do these results suggest for robust metric modelling of decision-making 146 in complex interrelated system settings under incomplete information? Decision-making and 147 innovation/learning insights from comparing these modelling approaches is based on a case 148 study of agricultural production and land/water use reallocation choices in Australia's Murray-149 Darling Basin (MDB). Climate change in the MDB illustrates a need to shift from routine to 150 innovative choices where future outcomes may be known (e.g., decreased rainfall), but the full 151 set of choices (both allowing and motivating innovative adaptation) remains incomplete. We begin with a description of the MDB and its production/water systems as a basis for the model 152 153 data before shifting to an explanation of the two analytical approaches.

154 2 Study context: Australia's MDB

155 In Australia's Murray-Darling Basin (MDB) water resources are over-allocated. On average 156 the MDB has 25.467GL (gigalitres or one billion litres) of conjunctive water resources (runoff 157 rather than river or storage inflows) that contributes to annual allocable water resources shared 158 between users. This volume is primarily derived from rainfall (23,925GL) and groundwater 159 aquifers (1,424GL), while 1,118GL are transferred into the MDB from the Snowy Basin 160 (Adamson, Quiggin, & Quiggin, 2011). However, averages are misleading when dealing with water resources. The MDB has the second most variable water flows in the world (McMahon 161 162 & Finlayson, 1991) and the Darling River is the most variable river system globally (Khan, 2008). To access these resources approximately 19,300GL of water right entitlements have 163 been issued, but the annual conjunctive and allocable water resources average around 11,000GL 164 per annum (BoM, 2020). This over-allocation creates conflict between economic, social and 165 166 environmental users, and climate change is expected to reduce the future volume of water 167 available exacerbating that conflict. Critically for the purposes of our case study, any misallocation of water resources will increase fragility of economic, social and environmental 168 169 systems and lower their capacity to respond effectively.

170 As stated above, a prime example of plausible future states of nature in the MDB is 171 climate change which is expected to increase the frequency of MDB extreme flood and drought 172 events. Both extreme events will be triggered by altered spatial and temporal patterns of rainfall, 173 but the general consensus for Australia is that droughts will become more frequent and more 174 severe (IPCC, 2018). As 88 per cent of irrigation supplies in the Basin are derived from surface flows (Adamson et al., 2011) understanding future rainfall and runoff patterns is critical. 175 176 However, outcome predictions are bounded by the complexities involved in upscaling and 177 downscaling climate models (Berrocal, Craigmile, & Guttorp, 2012; Whetton, Grose, & 178 Hennessy, 2016). This scaling issue creates confusion and considerable incomplete information 179 for local and smaller-scaled decision-makers, as well as those charged with managing the 180 resources at basin scale. For example, if we use proportional downscaling models based on an assumption that four per cent of MDB rainfall becomes surface runoff (Australian Bureau of 181 182 Statistics, 2008) we could assume a linear relationship between rainfall to runoff. However, Austin et al. (2010) found that this relationship is not linear. The spatial and temporal nature of 183 184 rainfall and the landscape rainfall-runoff attributes incur an elasticity of two to three-times (i.e., 185 a 10% decline in rainfall equates up to a 20 to 30% reduction in runoff), making future natural variability predictions and the identification of viable economic, social and environmental
solutions difficult. This problem statement may be served by the plausible future robustness
metrics described above.

189 But new plausible futures will shape the bio-physical characteristics of surface runoff and 190 soil moisture and possibly fall outside past or current decision-making experience. Further, 191 where decision-makers fail to correctly identify and parameterize these future production inputs 192 (e.g., water) and outputs (i.e., changing comparative advantage) then economic, social and environmental capital will all be similarly exposed (Kingwell & Farre, 2009). To prevent capital 193 194 loss Jodha (1991) argues decision-makers must incorporate flexibility into their decision 195 systems and rapidly innovate based on past and new information when signals are 'ecologically 196 rational' (Goldstein & Gigerenzer, 2002). However, as Mallawaarachchi and Foster (2009) and 197 Loch et al. (2012) discuss, any adaptation to climate signals is dependent on the flexibility of 198 institutional frameworks and available solutions (e.g., capacity to trade water), the decision-199 maker's cognitive capacity (e.g., bounded rationality or attitude to learning), and existing 200 production system constraints (e.g., perennial versus annual cropping systems)-issues not 201 typically represented by or incorporated into the traditional robustness metrics described earlier. 202 In this paper we argue that by explicitly representing what we understand about plausible future 203 states, alternative public/private capacity to recognize those states, and incomplete (non-204 deterministic) response sets applicable to these settings we can identify when/how institutional 205 or decision-maker solutions fail-and innovative decisions with increased adaptive flexibility 206 (robustness). This flexibility should theoretically lead to robust outcomes which not only adapt 207 to past and new plausible scenarios, but also provide greater capacity to respond to future events.

208 **3 Modelling incomplete information and resource (re)allocation**

With this context in mind and, given our focus on robustness tests, we next detail the EV and SCA approaches used in our comparisons. Each approach involves a deterministic (complete information) and stochastic (plausible) model specification. To frame our resource reallocation analysis—which is a focus of traditional economic study—we begin with a general discussion of how economic modelling deals with incomplete information.

214 3.1 Traditional production economics approaches

215 Incomplete information in economics is typically modelled via sensitivity analysis to explore 216 the mean and variance of probability distributions that positively/negatively impact 217 costs/benefits (Merrifield, 1997). However, in such analyses the decision-maker remains 218 passive to external stimuli and incapable of innovation/learning or operating within nonlinear 219 parameters. Downside risk has motivated economic researchers to expand beyond mean-220 variance approaches (e.g., by including skewness) to explore innovation/technology adoption 221 impacts on our thin- or fat-tailed payoff distributions (Jean-Paul Chavas & Nauges, 2020). For 222 example, in production economic applications, modelling resource reallocation often involves 223 a passive decision-making response based upon the mean and an error term. This formed the 224 basis of Just & Pope's (1978) critical review of stochastic production functions where the 225 general form of their model is:

226

$$\mathbf{y} = \mathbf{f}(\mathbf{X}, \boldsymbol{\varepsilon}). \tag{1}$$

The error term (ε) provides a stochastic description of final output based on set combinations of inputs (X). However, the error term is frequently based on past data where known mean and variance parameterize a probability distribution function. Monte-Carlo simulations allow for a series of outcome-runs to determine the likelihood of investment decisions making a return, given expected pricing outcomes. Taking these issues into account, 232 Just and Pope concluded that while the generalized function is appropriate for empirical work, 233 it remains unsatisfactory for dealing with plausible futures. Prior to this, Rothschild & Stiglitz 234 (1970, 1971) noted the limitations of relying on mean-variance by illustrating the results of 235 choosing between variables with the same expected value, but different distributions. A critical 236 limitation, commonly known as Mean Preserving Spread, identifies how alternative weights in 237 the distribution of tails can result in investors choosing riskier rather than safer investments by 238 assuming the decision-maker remains passive to signals provided. As discussed, Pindyck 239 (2011) argues climate change events can have thin- or fat-tailed outcomes and may transition 240 between these two outcomes; possibly within short time frames due to the complex systems 241 involved. Thus, modelling which fails to account for these plausible outcomes may represent a 242 decision-maker (e.g., farmer) as one who refuses to adapt in the face of required change no 243 matter the signal; which as discussed is unrealistic given different approaches to 244 innovation/learning. Despite this conclusion, the use of stochastic production functions is 245 common within the literature when dealing with production decisions under incomplete 246 information. We detail a common modelling approach below.

247 3.2 Expected value modelling approaches

In expected value (EV) models future economic return E[Y] is calculated by multiplying each possible outcome by the likelihood it will occur and then summing those values to provide a long-run average or mean. In a simple application/equation, deterministic parameters are used. For example, agricultural decision-makers will maximize returns with respect to available area A of production systems (δ) .¹ Final returns are subject to yield Q, market prices P and production costs C (Equation 2):

254 $\boldsymbol{E}[\boldsymbol{Y}] = \sum_{\boldsymbol{\delta}} \left[\boldsymbol{A}^{\boldsymbol{\delta}} \times \boldsymbol{Q}^{\boldsymbol{\delta}} \times (\boldsymbol{P} - \boldsymbol{C})^{\boldsymbol{\delta}} \right]$ (2)

255 This then provides a single point estimate of an outcome (Figure 1a). In such a world we 256 are modelling complete information. However, we can relax the deterministic equation above 257 and adapt it to climate change problems—as an example of incomplete information—by 258 incorporating stochastic representations via the addition of an error term ε (as in Figure 1b) to 259 describe final outputs based on random combinations of inputs, and to represent plausible 260 futures (Equation 3). We keep *P* constant to minimise multiplicative uncertainty to explore how 261 the availability and demand for water alters decision-making between different models:

262
$$\boldsymbol{E}[\boldsymbol{Y}\boldsymbol{\varepsilon}] = \sum_{\boldsymbol{\delta}} \left| \boldsymbol{A}_{\varepsilon}^{\boldsymbol{\delta}} \times \boldsymbol{Q}_{\varepsilon}^{\boldsymbol{\delta}} \times \left(\boldsymbol{P}^{\boldsymbol{\delta}} - \boldsymbol{C}_{\varepsilon}^{\boldsymbol{\delta}} \right) \right|$$
(3)

Recall that stochastic representations acknowledge the inherent natural variability within a system but also assume decision-makers do not innovate/learn in response to external stimuli, thereby potentially misallocating resources (Chambers & Quiggin, 2000; Chavas, Chambers, & Pope, 2010). However, this version of the model is more comparable to alternative SCA approaches for determining how decision-makers may reallocate resources in response to a changing climate.

269 3.3 State contingent analysis modelling approaches

Early SCA studies used the term 'states of nature' when discussing the assessment of production choices under exogenous plausible futures. SCA allows for active decision-making

¹ For the models three terms are critical: 21 production system (δ) choices in total for state contingent modelling; for each production system there is a defined commodity (*M*) dependent on states that defines the inputs and outputs by that state; and 16 production systems for the EV modelling which are based on normal state production systems only. See Table 2 which describes these systems and the adaptation contrast between SCA and EV.

responses to revealed or anticipated future states of nature (e.g., climate change impacts such
as increased frequency of drought events). It therefore reduces problems of incomplete
information and resource misallocation that could be driven by applications of a stochastic EV
model (Just & Pope, 1978).

276 The earliest work was undertaken by Arrow (1953) and Debreu (1959), providing 277 capacity to represent how decision-makers respond to realized and/or plausible future states 278 (e.g., drought/flood events). Graham (1981) used this approach to explore farmers' willingness 279 to pay for a public dam project that provided water supply in dry states of nature, and flood mitigation in wet states. However, it was Hirshleifer's (1965, 1966)² work that articulated clear 280 281 differences between dominant mean-variance approaches and state of nature representations of 282 incomplete information risk. According to Hirshleifer (1965), state of nature approaches 283 remove the "vagueness" (pg. 534) associated with some robustness test methodologies, as it 284 allows the decision-maker to precisely identify both the natural endowments provided in a given 285 state and the factors of production required to obtain an output in that state of nature. This 286 finding has been reiterated in more recent studies (e.g. Adamson & Loch, 2021; Hildebrandt & 287 Knoke, 2011).

288 Chambers and Quiggin (2000) subsequently extended the state of nature approach by 289 merging it with dual optimisation to illustrate how resource allocations represent adjusting input use in all states by time, place and type (Rasmussen, 2003)³. Following this work, the state of 290 nature approach became the SCA approach. In the SCA approach, nature (Ω) defines the state 291 292 space that can be divided into a series of states of nature (s) to define real and mutually-293 exclusive sets (S) describing plausible futures ($\Omega = \{1, 2, ..., s, ..., S\}$). Importantly the 294 decision-maker has no ability to influence which s occurs; s is determined exogenously (Figure 295 1c where triangles represent distribution by dry, normal and wet states). Further, the decision-296 maker's subjective belief about the frequency (π) of each s occurring is a probability vector 297 described by $(\boldsymbol{\pi} = \pi_1, ..., \pi_s)$. However, for each s the decision-maker has a set of solutions 298 giving rise to alternative commodity options (M) dependent on the state outcome—see Table 1 299 for details. This can be represented (Equation 4) by a "continuous input correspondence, $X: \mathfrak{R}^{S}_{+} \to \mathfrak{R}^{N}_{+}$, which maps state-contingent inputs into output sets that are capable of producing 300 301 that state-contingent output vector" (Chambers & Quiggin, 2002, pg. 514):

302
$$X(\mathbf{z}) = \{ \mathbf{x} \in \mathfrak{R}^N_+ : \mathbf{x} \text{ can produce } \mathbf{z} \}.$$

305

The basic form of the state contingent approach to model production risk and incompleteinformation is:

$$\mathbf{y}_{\mathbf{S}} = \boldsymbol{f}(\mathbf{x}_{\mathbf{S}}) \ \mathbf{s} \in \boldsymbol{\Omega} = \{\mathbf{1}, \dots, \mathbf{S}\}$$
(5)

(4)

306 where output (y) is described from a specific crop (x) produced within a single state of nature 307 (s). Rasmussen (2006) argues that outcomes (i.e., yields and prices) arise from states of nature, 308 implying the use of stochastic functions. Chavas (2008) used this concept to illustrate the output 309 from a decision when inputs had to be allocated before the state was fully realized, in line with traditional robustness tests outlined above. By highlighting the reliability of state conditions or 310 311 what we expect within a state (e.g., quantity of rainfall in a drought) we can illustrate production 312 heterogeneity within the model (i.e., variable yields in a given state of nature), the amount of 313 input required by state (i.e., water requirements for a state commodity choice) and importantly

² Note Hirshleifer (1965) uses the term 'state-preference' rather than Arrow's (1953) states of nature.

³ Refers to three input types: i) *non-state-specific (or state-general)* inputs that must be allocated *ex-ante* to the *s* being realized, and which influence *z* in all *s*; ii) *state-specific inputs* that are applied *ex-post* to the realisation of *s*, and which influence *z* in only that *s*; and iii) *state allocable (flexible) inputs* that are applied *ex-ante* to *s* being realized, but where benefits accrue once *s* is realized.

the solution response to extant conditions (i.e., variation with a state decreases through time via learning). Now climate change can also be represented by altering the states' variance. This can be written as:

317

$$\mathbf{y}_{\mathbf{S}} = \boldsymbol{f}(\boldsymbol{x}_{s}, \boldsymbol{\varepsilon}_{s}) \, \mathbf{s} \in \boldsymbol{\Omega} = \{\mathbf{1}, \dots, \mathbf{S}\}. \tag{6}$$

318 This sets climate variability and resource reallocation by placing boundaries on 319 incomplete information about future states, and illustrating a decision-makers' capacity to learn 320 and apply appropriate contingency measures. When the re-introduction of stochastic errors are 321 applied independently to either the state of nature, the state specific inputs requirements, or the 322 state described outputs, then the environmental signal and the response to that signal can be 323 separated. This separation minimizes multiplicative and additive uncertainty found in 324 approaches with multiple stochastic functions. Applications of this approach can either follow 325 Chavas' (2008) two stage decision model (i.e., fixed inputs allocated before the state was 326 revealed) or mimic capacity to reallocate resources once the state is revealed and learning or 327 innovation occurs. The concept of a two-stage decision is analogous to describing the error term 328 from Equation 6 to simulate the solution using a Monte-Carlo simulation (Liddle & Monahan, 329 1988). For our paper this is referred to as the simulated or *ex-ante* (i.e., before the state is 330 revealed) solution. The second approach occurs when decision-makers can reallocate resources 331 after the state reveals itself. This is analogous to having perfect awareness and is modelled 332 through Monte-Carlo optimisation using Equation 6 where new data is drawn from the 333 deterministic distribution. In this paper, we label this the *ex-post* (complete information) 334 solution. A triangular distribution has been used to set hard bounds (Equation 7). As the distance 335 between bounds increases the fuzziness proportionally increases:

336
$$y_{s} = \begin{cases} \frac{2(y_{s}-a_{s})}{(c_{s}-a_{s})(b_{s}-a_{s})} & \text{if } a_{s} \leq y_{s} \leq c_{s} \\ \frac{2(b_{s}-y_{s})}{(b_{s}-c_{s})(b_{s}-a_{s})} & \text{if } c_{s} \leq y_{s} \leq b_{s} \end{cases}$$
(7)

Note that in our study the state of nature is a special case in this formula. River flow can only be $a_s \ge 0$ but the minimum and maximum water supply is confined by other state of nature mean flows and must not exceed *c* of the proceeding and subsequent states of nature. For example, if state 1 = dry, state 2 = normal, and state 3 = wet then $c_1 \le b_2 \le c_2$. This prevents obscuring the signal.

342 In our SCA models, a complete set of states explicitly internalizes plausible futures and 343 allows for deterministic approaches using complete information to be estimated for a 10-year 344 investment horizon. This specification means that individual decision-makers have perfect 345 awareness about all future states of nature (i.e., a dry state is always identical through time). any commodity always requires the same volume of irrigation water (and other inputs) in each 346 347 state of nature, and outputs through time are constant within each state. This equation can be 348 expanded to mimic the stochastic EV model specification above, where the probability of state 349 occurrence π , production systems, state commodity selections, yields, market prices and costs 350 are all state specific (Equation 8):

351
$$\boldsymbol{E}[\boldsymbol{Y}] = \sum_{\delta} \sum_{\boldsymbol{S}} \boldsymbol{\pi}_{\boldsymbol{S}} \left[\boldsymbol{A}^{\delta} \times \boldsymbol{Q}_{\boldsymbol{S}}^{\delta} \times (\boldsymbol{P} - \boldsymbol{C})_{\boldsymbol{S}}^{\delta} \right]$$
(8)

This version of the model is aligned to a perfect knowledge outcome, where all probabilities are known in advance. Chambers and Quiggin (2000) argue that representing perfect foresight problems within a state contingent approach allows for solutions to be generated using standard optimisation techniques applied to problems not involving incomplete information. For example, using a perfect foresight model, Adamson et al. (2009) illustrated how SCA can encapsulate economic, environmental and social objectives while predicting how irrigators 358 respond to climatic variability and change. By explicitly representing water variability by state 359 (i.e., dry, normal and wet), and decision responses to that state (change in inputs or production 360 system), they determined that changes in the frequency of dry states was a greater factor in 361 decision-maker allocation of capital than the reduction in water supply by state outcome. 362 However, they concluded that when optimising with complete deterministic awareness while 363 the theoretical optimum may be obtained the solution will be inflexible, as any natural 364 variability in the description of the state and the inputs required in each state is ignored. Further, in that case, as the solution was derived from a directed river flow/network model any 365 366 incomplete information would violate the optimisation constraints and ultimately result not 367 only in misallocated resources but in solutions that could compound negative externalities.

368 To counter these outcomes, an uncoupled determination and incorporation of probability 369 outcomes in the model may be achieved via a stochastic SCA version. To model an agricultural 370 production problem under incomplete information the model must incorporate a stochastic 371 representation of either the state of nature (e.g., dry) and/or those inputs required by each state 372 of nature (e.g., additional water resources). Examining each commodity option separately 373 prevents the environmental signal and the response to that signal from being misinterpreted. 374 Importantly, relaxation of the deterministic values permits decision-makers to innovate/learn in 375 response to new signals within defined bounds. Further, a stochastic representation of outputs by state of nature is not needed as the ultimate constraint is the total future volume of water to 376 377 share between all users. State described output is a function of the state and the inputs available 378 as below:

$$E[Y_{\varepsilon}] = \sum_{\delta} \sum_{S} \pi_{S} \left[A^{\delta} \times Q_{S}^{\delta} \times (P - C)_{S}^{\delta} \right].$$
⁽⁹⁾

As π_s is the probability of the state occurring, $\sum \pi_s = 1$ (i.e., every state is identified), where $0 < \pi \le 1$ (i.e., the states must have a chance of occurring). Here the frequency of state occurrence $\pi \ 1$ to 3 = (0.2, 0.5, 0.3). Within those frequencies, the volume of water that is available, based on expected long term average inflows derived from MDBC (2006) is dry (0.6 x Normal Inflows), and wet (1.2 x Normal Inflows). Decision-makers are expected to respond to these state outcomes by reallocating output. By altering the volume available in normal states we can then explore the impact of climate change (see below).

387 3.4 Additional model specification requirements

388 Returning to our MDB case study, climate change compounds externalities associated with 389 over-allocated and ill-defined water property rights (Young & McColl, 2009). These negative 390 externalities include loss of natural capital (Kingsford, 2000), high salinity (Keating et al., 2002; 391 Yaron & Bresler, 1970), urban water quality reduction (Adamson, Schrobback, & Quiggin, 392 2008) and the inability of the irrigation network to deliver water to all users when required 393 (Robertson & Wang, 2004). Consequently, to deal with inequitable resource reallocations, 394 future shares of water in the MDB are constrained by environmental and social objectives to 395 internalize these externalities (Commonwealth of Australia, 2008). We account for these issues 396 with extensions to the model specification, as below. The model aims to maximize economic 397 return (Equations 2, 3, 8 and 9) from using water for irrigation in a spatially explicit 398 representation of regional comparative advantage in production by state of nature (S = dry, 399 normal and wet). Commodity options δ equal 16 in the EV models and 21 in the SCA models. This difference is due to the SCA model's capacity to transition in and out of return-generating 400 activity Y by state of nature. The river system is modelled as an undeveloped network with 401 402 natural inflows and salt loads by state of nature. As water is extracted for irrigation the return 403 flows transport salt back into the river network, thereby highlighting the opportunity cost of 404 water use by location. The models are optimized from a national good perspective (i.e., a

405 benevolent individual controlling all resources to maximize returns across catchments subject
406 to environmental needs and social requirements for salinity levels in water). This then mimics
407 the complex interrelated system described at the beginning of the paper.

408 For each model specification the relevant equations are summarized in Table 2. 409 Maximized economic return is always subject to maintaining the City of Adelaide's water 410 quality at less than 800 electrical conductivity (EC) in each state of nature, in at least 95% of 411 years. The measurement of salinity in milligrams per litre (σ) is converted into EC by dividing it by 0.64 (Equations 10-13). The volume of water used in the basin must also alwavs be less 412 413 than the Cap⁴ on average (i.e., as long as the average Cap is not violated you may use up to the 414 Cap in a given state of nature) as specified in Equations 14-17. In the model extractions described for the urban and dryland use under the Cap, all catchments apart from Adelaide are 415 416 removed from inflow before the model is optimized to ensure that they received their water 417 allocations. The Cap has been transformed simply into diversions for irrigation purposes. 418 Equations 18-21 ensure that water use in a catchment must be less than or equal to the flow in 419 that catchment, while Equations 22-25 state that the area dedicated to horticulture in any 420 catchment must be less than or equal to the horticultural constraint in that area. Equations 26-421 29 ensure that the total area dedicated to irrigation in any region must be less than the total area available in that region. Finally, Equations 30-33 ensure that there is sufficient operator labour 422 423 to undertake the irrigation activity mix in a region (*r*).

424 The costs for producing one hectare of state-dependent commodity M for each catchment 425 K in each state S can be written as the sum of capital costs (i.e., capital costs do not change by 426 state of nature and are modelled as an annual cost), plus operator labour costs LC (i.e., hours L427 is multiplied by a constant price LP), plus variable costs VC (Equation 38). Finally, Equation 428 39 details the variable production costs which are derived from the sum of casual labour CL429 (i.e., hours multiplied by a constant price), contractor costs Con, machinery costs Ma, chemical 430 costs Ch, plus water use W multiplied by water price Wp and the sum of any other costs Ot.

$$R_{ks} = \sum (CC_k + LC_{ks} + VC_{ks})$$
⁽³⁸⁾

$$VC_{ks} = \sum (CL_{ks} + Con_{ks} + Ma_{ks} + Ch_{ks} + (W_{ks} \times Wp_{ks}) + Ot_{ks})$$
(39)

431 Once again, Equations 30-33 in Table 2 deal with the amount of operator labour *L* 432 required to produce $\Sigma \delta$ in K. Here we ensure that the amount of labour in a region derived 433 from ABS (2004) data and based on number of farms multiplied by two people by 2,500 434 hours/person is adequate to meet the needs of the chosen production systems.

435 3.5 Models and data

The models were developed in Microsoft Excel using the Risk Solver Platform from Frontline Systems v.12. In line with our earlier definitions of ex-ante and ex-post models the platform uses a Monte-Carlo approach in two different ways—again, as depicted in Figure 1. First, for all ex-ante models the solution is optimized once (i.e. production systems are held constant) and then the robustness of that model is tested 1,000 times by exploring either a stochastic representation of water input requirements (i.e. ex-ante inputs) or the description of

⁴ The Cap refers the 1997 limit on long term diversions. Here the term Cap is interchangeable with the economic consumptive diversion limit (CDL) or environmental sustainable diversion limit (SDL) depending on which scenario is run.

442 the state of nature (i.e. total water supply, ex-ante state). Under this constraint, simulating water 443 requirements for the production systems we see change to water quality (e.g., salt levels), water 444 flows and the hard environmental targets (i.e. flows to the Coorong). We recognize that under 445 this approach the environment is forced to assume all risk, which is unrealistic, but simplifies 446 things. As shown in Appendix Table A3, ex-ante water input model runs are depicted in Runs 2, 7, 12, 17 and 22 while ex-ante state are Runs 4, 9, 14, 19 and 24. These runs allow us to see 447 448 how either the water requirements or water supply impact on water quality (Equations 10 and 449 12) and water flow constraints (Equation 18 and 21).

450 Second, the ex-post models are optimized 1,000 times with a complete description of 451 either the inputs required by state of nature (i.e. ex-post inputs Runs 3, 8, 13, 18 and 23) or the 452 state of nature total water supply (i.e. ex-post state Runs 5, 10, 15, 20 and 25). For input 453 requirements we can then see how production systems are optimized while meeting salinity 454 constraints (Equation 11 and 13) and flow constraints (Equations 19 and 21). By altering one 455 variable at a time we minimize multiplicative uncertainty and determine whether it is the 456 description of the inputs or the states that have the largest impact on reallocating land between 457 production systems, farm profit, water use, residual flow and water quality outcomes. Logically, 458 the ex-post with complete information is the theoretically maximum allocation of resources. 459 This approach follows Adamson et al. (2007).

460 The optimization algorithm used was the Large Scale SQP Engine to deal with the non-461 linearity of river flow. Each of the models uses a conjunctive approach to water resources as 462 described above. Consequently, total water inflows are dependent upon surface supplies, ground water supplies and inter-basin transfers. The model uses a directed flow network where 463 the Basin is divided into 21 catchments consisting of the 19 irrigation areas plus the City of 464 465 Adelaide and the Coorong (default flow to sea). Production area by catchment K is a matrix of commodity choices dependent of the state outcome $(K \times \delta) \times S$ (Table 1). There are 23 466 467 production systems consisting of state commodity choices, the City of Adelaide's water supply, 468 and a dryland production system. Catchments (e.g., the Condamine as described in Table 3 and 469 further detailed in Appendix Table A1) are based on disaggregated Catchment Management 470 Regions to help model the directed flow network (water and salt). Water flows (fks) out of a 471 given catchment are equal to inflows (net of evaporation and seepage) less extractions (net of 472 return flows). Extractions are determined endogenously by land use decisions as described 473 below, subject to limits imposed by the availability of both surface and groundwater (Equations 474 34-37, Table 2). This structure allows for the determination of total irrigation use, flow to the 475 Coorong, and water quality arriving at the City of Adelaide.

476 The second critical factor in describing A is the matrix δ where the state contingent 477 production systems are defined. Each state of nature outcome drives an independent commodity representation of yields Q, prices P, costs of production C and input requirements N such that 478 479 each matrix has a form of (21 x 23). This data is based on a series of regional gross margin 480 budgets that provide the data for the five inputs modelled (N = water, land, labour, capital and 481 cash input). The agricultural systems are derived from $(K \times M) \times S$, where in this case M 482 represents commodities. A commodity is a single enterprise under a given state in a given 483 catchment. This version of the model has 15 distinct commodities (M) plus urban water for the 484 City of Adelaide and water for the Coorong. Consequently, there are (M+2) x S distinct state-485 contingent commodities. Yield Q has a dimension of $(K \times M) \times S$ which represents the 486 output derived for that state of nature. Net return per hectare is described in the model as (*P*-*C*). Price P paid for output has a matrix of $(M \times S)$. For simplicity it has been assumed that the 487 488 price paid in all regions for each commodity is uniform by state of nature.

489 Because the model is solved on an annual basis, the process of capital investment is 490 modelled as an annuity representing the amortized value of the capital costs over the 10-year 491 lifespan of the development activity. This allows us to model a range of pricing rules for capital, 492 and to represent the imposition of appropriate constraints on adjustment to derive both short-493 run and long-run solutions. The state contingent approach also allows for discontinuous 494 environmental and production functions to be classified as alternatives within each state of 495 nature. This specification of environmental, urban or private requirement by state of nature 496 helps determine the type and number of water property rights needed to meet that demand. For 497 all scenarios examined in this paper, Equations 34-37 apply only to those scenarios that specify 498 a minimum flow of 1,000 GL reaching the Coorong. Alternative studies could incorporate 499 environmental targets along the river system to stipulate river flow constraints along the system 500 as either flow targets by each state of nature (i.e., dry, normal or wet) or on average over the 501 states of nature. Finally, climate change is represented in our models as the difference between 502 i) current state conditions (experienced) and ii) two alternative climate scenarios (plausible) 503 where average atmospheric carbon levels reach 550 parts per million (ppm) under constant state frequencies (Runs 11-15 and 16-20 in Appendix Table A3) for the EV and SCA models, and a 504 505 second where climate change is represented as an increase in the frequency of dry states under 506 current climate conditions (Runs 21-25 in Appendix Table A3). The second scenario is only run in the SCA model because the EV does not explore tails. This approach builds on Quiggin 507 508 et al. (2010), and is incorporated in the ex-ante/ex-post runs. For a complete set of model 509 outputs please refer to the Appendix materials Tables A3 to A5 online.

510 **4 Results**

511 Recall that our first research question queried if it is possible to represent incomplete information problems via stochastic bounds across the model types. In simple terms this is 512 513 possible, and our results suggest that deterministic (complete information) EV models align 514 well to stochastic (plausible future) SCA model specifications. This can be illustrated via a 515 consideration of how land and water resources are reallocated across the MDB in response to 516 different event outcomes (Table 4). EV modelled economic returns during dry and wet events, 517 even when modelled by input or state, are non-existent. By contrast, the deterministic, input 518 and state SCA models return more nuanced results across all states for both current and future 519 climate conditions. Note though that both salinity and Coorong flow results are differentiated 520 between the deterministic and input/state EV models, where wet and dry condition outcomes 521 drive some reallocation above zero values. This suggests that the ex-post inputs model, and 522 both the ex-ante and ex-post state EV models, have some capacity to respond to stochastic 523 events with respect to those model constraints-but not others. Thus, the deterministic EV 524 models appear to ignore (not represent) environmental signals.

525 Note also the water use results in Table 4. In both current and future climate conditions 526 water use in dry and wet conditions falls to zero across the full set of EV models, with only the 527 mean (normal) values being reported. While all models have the same bounds, the capacity of 528 the SCA models to capture and report differences in the frequency of state events allows for 529 kinks in the available water supply in gigalitres (Figure 2). Akin to thinking by Guttman et al. 530 (2006), differences between rational experience, informed decision-making and discontinuities 531 arising from innovation or learning may appear as kinks. Their work finds no evidence of 532 smoothing in financial markets; why then would we expect to find it in complex natural 533 systems? In our models, changes in event frequency (e.g., more drought) causes decision kinks 534 to move inversely. In the EV models these might be interpreted as noise, rather than adaptation 535 decisions in response to altered state outcomes, and be ignored as such.

536 Production reallocation decision results are also interesting across the commodity model 537 runs, especially for horticulture crops between the EV and SCA models (Table 5). Note what happens in the area by state of nature. Under increasing climate change, the EV model is unable 538 539 to respond to the extreme tails in the distribution, sticking instead to mean values. This shrinks 540 the total area dedicated to irrigation and fundamentally alters the institutional characteristics of 541 the system. By contrast, the SCA model reallocates land under production during good seasons 542 to offset lower returns in the drought (e.g., wheat/cotton). In this situation we see the SCA 543 model reallocates water away from those commodities that always use water towards those that 544 stop irrigating in dry years (e.g. Flex cotton and Flex Rice)-and as opposed to those that crop 545 every year in a fixed pattern. Opportunistic irrigation will only occur in wet years (Dryland 546 Cotton and Dryland Wheat)⁵, when the frequency of dry states increases. See the Appendix for 547 further elaboration on this complex process which represents decision-maker adaptation to the 548 plausible future signals provided, and model capacity to represent innovation/learning over 549 adherence to familiar decision pathways based on experience (i.e., routines).

550 The requirement for models to take state of nature tails into consideration-and prompt 551 innovation or learning (note the change in area between SCA State, ex-ante and SCA State ex-552 post between Rice Flex and Wheat Dryland)—is also borne out in predicted water flows by 553 state which enables us to look more closely at the importance of variability. Under the 554 deterministic EV and SCA models demand will quickly outstrip supply in dry states, 555 threatening river system shutdown. But, equally, the models will fail to report decision-makers' 556 willingness to use abundant water resources during wet periods. Model solutions that fail to 557 account properly, or at all, for system bounds and the full extent of outcome variance ultimately 558 fail. Figure 3 puts this into perspective across the model runs. The EV model data range for 559 both deterministic and stochastic representations of inputs falls within the estimated bounds of 560 the deterministic SCA model. This suggests that the EV model cannot progress past the range 561 of the deterministic (deterministic or historic data-coupled) SCA, is constrained by the tails, 562 and suggests decision-makers cannot learn to adapt or innovate to change. This is unrealistic as 563 we have discussed above. Further, differences between the ex-ante (plausible) and ex-post 564 (complete information) models also illustrate the positive benefits of innovation/learning by 565 decision-makers.

566 As both Quiggin (2019) and Pindyck (2011) have noted, tails in the distribution have 567 serious implications for understanding climate change, and rare events often have far greater consequence than we give them credit for. Thus, any approach that cannot represent both the 568 569 possible impact and solution consequences to rare events may lead to a serious underinvestment 570 in flexible or adaptive responses leading to long term economic, environmental or social losses. 571 Considering the time required to optimize between a deterministic model and a stochastic model 572 and the outcomes from the model, a deterministic SCA model provides significant insights for 573 minimal time.

574 These findings provide insights for our second research question about why models of 575 decision-making must be capable of representing innovation or learning in response to future 576 uncertain events (e.g., climate change). Logically, as inputs change and the comparative 577 advantage of commodity choices alter, decisions should alter as well. For example, as complete 578 information about the future significance of dry states increase (ex-ante) the need to transition 579 away from perennial commodities that require water in all states (i.e., horticulture) will increase. 580 As Adamson and Loch (2021) show, insufficient water for horticulture crops across all state 581 outcomes may result in irreversible capital losses (i.e., root stock loss). Models that do not take

⁵ Remember Table 3 where water use by SCA production system is produced. Rice is not grown in the Condamine so appears as 0 ML/Ha in all states.

irreversible outcomes into account are invalid in agricultural (and other) decision contexts comprising horticulture and may skew the interpretation or full set of public/private decision options. As plausible future events impose input shocks this will require public/private goals, institutions or behaviour decision sets to innovate and adapt in order to achieve long-run resilience; and models of robustness tests must appropriately capture and reflect such learning and innovation.

588 Figure 4 illustrates this requirement using Coorong flow results as a test of model 589 robustness. The deterministic SCA model provides a stable flow of water that is consistent with 590 policy and system constraints (i.e., realistic). The three EV model runs transfer an increasing 591 volume of water to Coorong flows as water is transitioned away from production under mean 592 (normal condition) use assumptions that, in reality, are unsustainable. Importantly, in Figure 4 593 we see that even with three EV models we cannot represent a change in the frequency of 594 alternative states of nature (or bad events occurring) as the current climate and frequency runs 595 are close to identical. In other words, again it appears as noise in the outcomes. Thus, even the 596 deterministic SCA model provides greater capacity to deal with changes to incomplete 597 information over time.

598 This finding is contrary to that of Adamson et al. (2009) where the frequency of bad states 599 had greater impacts on reallocating investments than a proportional mean reduction in average 600 inflows. In those earlier models, production area decreased but the investment decisions 601 remained constant. Thus, the EV model is incapable of seeing the difference in state frequencies 602 and generates the same results for current and future climate; even once the climate has altered 603 (i.e., EV state, ex-post frequency). If the model is representing a mean-reduction in water 604 availability (i.e., the 550 ex-post run), then a difference in the EV results will appear. This is a 605 problem for drought policy. If we model future climate adaptation as an increase in the 606 frequency of bad events, an EV model will not represent change. This also links back to our 607 Figure 1 representations of the model differences and supports the expected model outcomes.

608 Finally, we compared all model representations of drought water flows to the Coorong Wetlands, as shown in Figure 5. It is clear that the deterministic EV and ex-ante EV results lead 609 610 to situations where no flow to the Coorong occurs, as those models fail to understand the risk 611 to the conjunctive resource base. In essence the EV model then places bounds around the 612 analysis and would create a completely unknown/unexpected outcome. Any failure to consider 613 water demand upstream could lead to the collapse of the Coorong; a key management flow 614 target with irreversible loss implications. In reality, basin managers might allocate less water to 615 irrigation which could in turn lead to a solution choice creating irreversible private capital losses.

616 By acknowledging that alternative states of nature exist, the SCA model constraints are 617 achieved in the deterministic and the ex-post input evaluation. The deterministic model (i.e., SCA, Inputs ex-ante results) would be expected to fail in 50% of years and not 5% of years; 618 violating a key salinity performance objective for the river system. This suggests that 619 production/commodity system choices must transition away from always requiring water in 620 621 each state of nature (i.e., reduction in perennial crops), as detailed by Loch, Adamson, and 622 Auricht (2020). Critically, the difference between the deterministic and ex-post SCA model 623 occurs as the ex-post model actively reallocates resources towards opportunistically irrigating 624 with substantial shifts towards "dryland cotton" and "dryland wheat" as illustrated in Table 2.

625 5 Concluding Comments

626 We have shown that climate change problems are well characterized as incomplete 627 information events with some ambiguity in the set of performance objectives and the full set of 628 appropriate solutions in response. Our comparison suggests that SCA modelling of land and water reallocation more robustly represents and evaluates public policy and private investment 629 630 decisions than deterministic/stochastic EV models which is the more commonly adopted 631 approach for economic and robust metrics modelling of incomplete information with respect to 632 plausible futures. This is based on our findings that applications of state contingent analysis 633 using deterministic data allows for an improved representation and understanding of plausible 634 future events (i.e., adverse and positive states of nature) together with model recognition that once incomplete information is addressed-decision-makers innovate/learn consistent with 635 636 Marshallian views. Stochastic SCA models also facilitate assessment of policy or investment 637 goals so that they can be tested for fragility, unrealistic conclusions, and/or irreversible loss 638 outcomes.

639 Applications of the stochastic SCA model description and its bounds allows for an 640 exploration of the level of risk associated with state-described input use, thus overcoming issues 641 associated with thin- or fat-tailed event distributions and non-linear climate change events 642 (Rosser, 2011). This is not possible using EV model approaches. By comparing ex-ante and ex-643 post results we are able to identify the value of being prepared for future adverse events, and 644 selecting adaptation/investment choices in response to preserve capital (i.e., natural, economic, social, cultural etc.) Further, deterministic SCA models provide better outcomes than stochastic 645 646 EV models due to the above-stated capacity to represent solution responses to thin- or fat-tailed 647 outcomes. This conclusion is supported by the SCA model's capacity to clearly separate the 648 signal from the individual's decision response, and thus inform how distribution tails contribute 649 to reallocation choices. This separation helps identify the importance of tail events and helps 650 identify where existing knowledge, technology and known management responses fail-even where plausible future scenarios do not reflect states of nature previously experienced. We 651 652 could further apply such analysis and undertake sensitivity testing to determine when systems 653 may fail and/or enter the active set of possibilities, and this would provide lessons for on-going 654 management adaptation at both private and public levels. Future research paths and questions 655 will be informed by an increased awareness of the full set of contingencies that may/may not 656 be applicable under future climate change. Such research will enhance future innovation and adaptation and tests of robustness in the literature given the call to explore complex inter-657 658 relationships in human-water systems. However, in practice, the success of those choices will 659 still be constrained by decision-maker bounds to awareness, and any truly Knightian uncertain 660 events that may arise.

661

663 **References**

- Adamson, D., & Loch, A. (2021). Incorporating uncertainty in the economic evaluation of
 capital investments for water use efficiency improvements. *Land Economics*, 97(3),
 655-671.
- Adamson, D., Mallawaarachchi, T., & Quiggin, J. (2007). Water use and salinity in the Murray Darling Basin: A state-contingent model. *Australian Journal of Agricultural and Resource Economics*, 51(3), 263-281.
- Adamson, D., Mallawaarachchi, T., & Quiggin, J. (2009). Declining inflows and more frequent
 droughts in the Murray–Darling Basin: climate change, impacts and adaptation. *Australian Journal of Agricultural and Resource Economics*, 53(3), 345-366. doi:
 10.1111/j.1467-8489.2009.00451.x
- Adamson, D., Quiggin, J., & Quiggin, D. (2011). Water Supply Variability & Sustainable
 Diversions Limits: Issues to Consider in Developing the Murray-Darling Basin Plan
 Brisbane.
- Adamson, D., Schrobback, P., & Quiggin, J. (2008). Options for managing salinity in the
 Murray-Darling Basin under reduced rainfall. Paper presented at the 2nd International
 Salinity Forum: Salinity, water and society—global issues Adelaide Convention Centre,
 South Australia.
- Arrow, K. J. (1953). Le rôle des valeurs boursières pour la répartition la meilleure des risques,
 Econométrie, 41–47, CNRS, Paris; translated as The role of securities in the optimal
 allocation of risk bearing, *The Review of Economic Studies, 31*(2), 91-96. doi:
 10.2307/2296188
- Austin, J., Zhang, L., Jones, R. N., Durack, P., Dawes, W., & Hairsine, P. (2010). Climate
 change impact on water and salt balances: an assessment of the impact of climate change
 on catchment salt and water balances in the Murray-Darling Basin, Australia. *Climatic Change*, 100(3-4), 607-631.
- Australian Bureau of Statistics. (2008). Water and the Murray-Darling Basin A Statistical
 Profile Australia 2000–01 to 2005–06: ABS Catalogue No. 4610.0.55.007 Canberra,
 Australia: A. B. o. Statistics.
- Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). *Robust optimization*: Princeton university
 press.
- Berrocal, V. J., Craigmile, P. F., & Guttorp, P. (2012). Regional climate model assessment
 using statistical upscaling and downscaling techniques. *Environmetrics*, 23(5), 482-492.
 doi: 10.1002/env.2145
- 697BoM. (2020). Water Information Water Dashboards. Retrieved 12 February, 2020, from698http://www.bom.gov.au/water/dashboards/#/water-storages/summary/state
- 699 Chambers, R. G., & Quiggin, J. (2000). Uncertainty, production, choice, and agency: The state 700 contingent approach. New York: Cambridge University Press.
- Chambers, R. G., & Quiggin, J. (2002). The state-contingent properties of stochastic production
 functions. American Journal of Agricultural Economics, 84(2), 513-526. doi:
 10.2307/1244969
- Chavas, J.-P. (2008). A Cost Approach to Economic Analysis Under State-Contingent
 Production Uncertainty. *American Journal of Agricultural Economics*, 90(2), 435-446.
- Chavas, J.-P., Chambers, R. G., & Pope, R. D. (2010). Production Economics and Farm
 Management: A Century of Contributions. *American Journal of Agricultural Economics*, 92(2), 356-375. doi: 10.1093/ajae/aaq004
- Chavas, J.-P., & Nauges, C. (2020). Uncertainty, learning and technology adoption in agriculture. *Applied Economic Perspectives and Policy*, 42(1), 42-53.

- Commonwealth of Australia. (2008). *Water Act 2007* Canberra: Office of Legislative Drafting
 and Publishing, Canberra.
- 713 Debreu, G. (1959). *The Theory of Value*. New York: Wiley.
- Döll, P., & Romero-Lankao, P. (2017). How to embrace uncertainty in participatory climate
 change risk management—A roadmap. *Earth's Future*, 5(1), 18-36.
- Dow, S. (2020). *Alfred Marshall, evolutionary economics and climate change*. Paper presented
 at the Fourth Annual Tiziano Raffaelli Lecture, STOREP Conference, Rome.
- Goldstein, D. G., & Gigerenzer, G. (2002). Models of ecological rationality: The recognition
 heuristic. *Psychological Review*, *109*(1), 75-90. doi: 10.1037/0033-295X.109.1.75
- Graham, D. A. (1981). Cost-Benefit Analysis Under Uncertainty. *The American Economic Review*, 71(4), 715-725.
- Grant, S., & Quiggin, J. (2012). Induction reasoning about unawareness. *Economic Theory*, 1 39. doi: 10.1007/s00199-012-0734-y
- Guttman, I., Kadan, O., & Kandel, E. (2006). A Rational Expectations Theory of Kinks in
 Financial Reporting. *The Accounting Review*, *81*(4), 811-848.
- Herman, J. D., Reed, P. M., Zeff, H. B., & Characklis, G. W. (2015). How should robustness
 be defined for water systems planning under change? *Journal of Water Resources Planning and Management*, 141(10), 04015012.
- Hildebrandt, P., & Knoke, T. (2011). Investment decisions under uncertainty—a
 methodological review on forest science studies. *Forest Policy and Economics*, 13(1),
 1-15.
- Hirshleifer, J. (1965). Investment Decision under Uncertainty: Choice—Theoretic Approaches.
 The Quarterly Journal of Economics, 79(4), 509-536. doi: 10.2307/1880650
- Hirshleifer, J. (1966). Investment Decision Under Uncertainty: Applications of the StatePreference Approach. *The Quarterly Journal of Economics*, 80(2), 252-277. doi: 10.2307/1880692
- IPCC. (2018). Global Warming of 1.5°C, an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty Geneva.
 Retrieved from http://www.ipcc.ch/report/sr15/.
- Jodha, N. S. (1991). Sustainable Agriculture in Fragile Resource Zones: Technological Imperatives. *Economic and Political Weekly*, 26(13), A15-A26. doi: 10.2307/4397463
- Just, R. E., & Pope, R. D. (1978). Stochastic specification of production functions and economic
 implications. *Journal of Econometrics*, 7(1), 67-86. doi:
 <u>http://dx.doi.org/10.1016/0304-4076(78)90006-4</u>
- Kandlikar, M., Risbey, J., & Dessai, S. (2005). Representing and communicating deep
 uncertainty in climate-change assessments. *Comptes Rendus Geoscience*, 337(4), 443455. doi: <u>https://doi.org/10.1016/j.crte.2004.10.010</u>
- Keating, B. A., Gaydon, D., Huth, N., Probert, M., Verburg, K., Smith, C., & Bond, W. (2002).
 Use of modelling to explore the water balance of dryland farming systems in the Murray-Darling Basin, Australia. *European Journal of Agronomy*, *18*(1-2), 159–169.
- Khan, S. (2008). Managing climate risks in Australia: options for water policy and irrigation
 management. *Australian Journal of Experimental Agriculture*, 48, 265-273.
- Kingsford, R. T. (2000). Ecological impacts of dams, water diversions and river management
 on floodplain wetlands in Australia. *Austral Ecology*, 25(2), 109-127. doi:
 10.1046/j.1442-9993.2000.01036.x
- Kingwell, R., & Farre, I. (2009). Climate change impacts on investment in crop sowing
 machinery. [Article]. Australian Journal of Agricultural and Resource Economics,
 53(2), 265-284. doi: 10.1111/j.1467-8489.2007.00441.x

- Kwakkel, J. H., Eker, S., & Pruyt, E. (2016). How robust is a robust policy? Comparing
 alternative robustness metrics for robust decision-making. In *Robustness analysis in decision aiding, optimization, and analytics* (pp. 221-237): Springer.
- Liddle, R. F., & Monahan, J. F. (1988). A stationary stochastic approximation method. *Journal of Econometrics*, 38(1–2), 91-102. doi: 10.1016/0304-4076(88)90028-0
- Loch, A., Adamson, D., & Auricht, C. (2020). (g)etting to the point: The problem with water
 risk and uncertainty. *Water Resources and Economics*, 32, 100154. doi:
 <u>https://doi.org/10.1016/j.wre.2019.100154</u>
- Loch, A., Bjornlund, H., Wheeler, S., & Connor, J. (2012). Allocation trade in Australia: a
 qualitative understanding of irrigator motives and behaviour. *Australian Journal of Agricultural and Resource Economics*, 56(1), 42-60. doi: 10.1111/j.14678489.2011.00575.x
- Maier, H. R., Guillaume, J. H., van Delden, H., Riddell, G. A., Haasnoot, M., & Kwakkel, J. H.
 (2016). An uncertain future, deep uncertainty, scenarios, robustness and adaptation:
 How do they fit together? *Environmental Modelling & Software*, *81*, 154-164.
- Mallawaarachchi, T., & Foster, A. (2009). Dealing with irrigation drought: the role of water
 trading in adapting to water shortages in 2007-08 in the southern Murray-Darling
 Basin Canberra, Australia. Retrieved from
 <u>http://adl.brs.gov.au/data/warehouse/pe_abarebrs99001593/rr09.6_irrigation_drought</u>
 report.pdf.
- Mastrandrea, M. D., Field, C. B., Stocker, T. F., Edenhofer, O., Ebi, K. L., Frame, D. J., ...
 Matschoss, P. R. (2010). Guidance note for lead authors of the IPCC fifth assessment
 report on consistent treatment of uncertainties.
- Mazzucato, M. (2013). *The Entrepreneurial State Debunking Public vs. Private Sector Myths*.
 London UK: Anthem Press.
- McMahon, T. A., & Finlayson, B. L. (1991, 27-29 November 1991). Australian surface and groundwater hydrology - regional characteristics and implications. Paper presented at the Water allocation for the environment: Proceedings of an International Workshop, Armidale.
- McPhail, C., Maier, H., Kwakkel, J., Giuliani, M., Castelletti, A., & Westra, S. (2018).
 Robustness metrics: How are they calculated, when should they be used and why do
 they give different results? *Earth's Future*, 6(2), 169-191.
- 793MDBC. (2006). Murray-Darling Basin Water Resources Fact Sheet. Murray Darling Basin794Commisson, July2006. Retrieved from795http://www2.mdbc.gov.au/_data/page/20/MDB-WaterResources-FactSheet-July2006.pdf
- Merrifield, J. (1997). Sensitivity Analysis in Benefit Cost Analysis: A Key To Increased Use
 and Acceptance. *Contemporary Economic Policy*, 15(3), 82-92. doi:
 doi:10.1111/j.1465-7287.1997.tb00480.x
- Pindyck, R. S. (2011). Fat Tails, Thin Tails, and Climate Change Policy. *Review of Environmental Economics and Policy*, 5(2), 258-274. doi: 10.1093/reep/rer005
- Quiggin, J. (1982). A theory of anticipated utility. *Journal of Economic Behavior & Organization, 3*(4), 323-343.
- Quiggin, J. (2019). *Economics in two lessons: Why markets work so well, and why they can fail so badly.* Princeton NJ: Princeton University Press.
- Quiggin, J., Adamson, D., Chambers, S., & Schrobback, P. (2010). Climate Change,
 Uncertainty, and Adaptation: The Case of Irrigated Agriculture in the Murray–Darling
 Basin in Australia. *Canadian Journal of Agricultural Economics*, 58(Special Issue:
 Water in the 21st Century [4]), 531-554.

- Rasmussen, S. (2003). Criteria for optimal production under uncertainty. The state-contingent
 approach. Australian Journal of Agricultural and Resource Economics, 47(4), 447-476.
- Rasmussen, S. (2006). Optimising Production using the State-Contingent Approach versus the
 EV Approach. [19/06/2012]. FOI Working Papers no. 03/2007, Institute of Food and
 Resource Economics, Department of Economics, University of Copenhagen. Retrieved
 from
- 816http://www.foi.life.ku.dk/Publikationer/~/media/migration%20folder/upload/foi/docs/817publikationer/working%20papers/2007/working%20paper%20no%2003-%202007.pdf818.ashx
- Robertson, D., & Wang, Q. J. (2004). Bayesian networks for decision analyses an application
 to irrigation system selection. *Australian Journal of Experimental Agriculture*, 44(2),
 145-150.
- Rosser, J. B. (2011). How Nonlinear Dynamics Complicate the Issue of Global Warming. In
 Complex Evolutionary Dynamics in Urban-Regional and Ecologic-Economic Systems (pp. 197-211): Springer New York.
- Rothschild, M., & Stiglitz, J. E. (1970). Increasing risk: I. A definition. *Journal of Economic Theory*, 2(3), 225-243. doi: <u>http://dx.doi.org/10.1016/0022-0531(70)90038-4</u>
- Rothschild, M., & Stiglitz, J. E. (1971). Increasing risk II: Its economic consequences. *Journal of Economic Theory*, 3(1), 66-84. doi: <u>http://dx.doi.org/10.1016/0022-0531(71)90034-</u>
 2
- Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C., ... Rodríguez Iturbe, I. (2014). Socio hydrology: Use inspired water sustainability science for the
 Anthropocene. *Earth's Future*, 2(4), 225-230.
- Whetton, P., Grose, M., & Hennessy, K. J. (2016). A short history of the future: Australian
 climate projections 1987-2015. *Climate Services*, 2-3, 1-14.
- Yaron, D., & Bresler, E. (1970). A Model for the Economic Evaluation of Water Quality in
 Irrigation. Australian Journal of Agricultural Economics, 14(1), 53-62.
- Young, M. D., & McColl, J. C. (2009). Double trouble: the importance of accounting for and
 defining water entitlements consistent with hydrological realities. *Australian Journal of Agricultural and Resource Economics*, 53(1), 19-35. doi: 10.1111/j.1467840 8489.2007.00422.x
- 841

Figure 1c: SCA deterministic state-described outcomes (D = dry, N = normal, W = wet) within
 the stochastic frontier.

859 Figure 2: Charts of water use derived from the alternative modelling approaches

Figure 3: Water use (GL) results

igure 5. mater use (OL) Itst

Figure 4: Coorong flow results under dry conditions by EV/SCA model (ex-post)

Figure 5: Comparison of EV and SCA results on environmental dry flows to Coorong

870	Table 1: Production System by EV and SCA models
-----	--

Production	State Conting	gent Approach: Co	ommodity (M)	EV Approach				
System ($\boldsymbol{\delta}$)	Dry	Normal	Wet					
Citrus-H	Citrus-H	Citrus-H	Citrus-H	Citrus-H				
Citrus-L	Citrus-L	Citrus-L	Citrus-L	Citrus-L				
Grapes	Grapes	Grapes	Grapes	Grapes				
Stone Fruit-H	Stone Fruit-H	Stone Fruit-H	Stone Fruit-H	Stone Fruit-H				
Stone Fruit-L	Stone Fruit-L	Stone Fruit-L	Stone Fruit-L	Stone Fruit-L				
Pome Fruit	Pome Fruit	Pome Fruit	Pome Fruit	Pome Fruit				
Vegetables	Melons	Vegetables	Fresh Tomatoes	Vegetables				
Cotton Flex	Dryland Cotton	Cotton Flex	Cotton					
Cotton Fixed	Cotton Fixed	Cotton Fixed	Cotton Fixed	Cotton Fixed				
Cotton/Chickpea	Chickpea	Cotton Flex	Cotton					
Cotton Wet	Dryland Cotton	Dryland Cotton	Cotton					
Rice PSN	Rice PSD	Rice PSN	Rice PSW	Rice PSN				
Rice Flex	Dryland Wheat	Rice PSN	Rice PSW					
Rice Wet	Dryland Wheat	Dryland Wheat	Rice PSW					
Wheat	Wheat	Wheat	Wheat	Wheat				
Wheat Legume	Wheat Legume	Wheat Legume	Wheat Legume	Wheat Legume				
	PSD	PSN	PSW					
Sorghum	Sorghum	Sorghum	Sorghum	Sorghum				
Oilseeds	Oilseeds	Oilseeds	Oilseeds	Oilseeds				
Sheep Wheat	Sheep Wheat	Sheep Wheat	Sheep Wheat PSW	Sheep Wheat				
	PSD	PSN						
Dairy-H	Dairy-H	Dairy-H	Dairy-H	Dairy-H				
Dairy-L	Dairy-L	Dairy-L	Dairy-L	Dairy-L				
Notes: The EV mo	del has less product	tion systems availa	able as the ability to	alter production				
systems by state of	nature is not conside	red.						
H = intensive irrigation capital (i.e., drip lines)								
L = low irrigation capital (i.e., furrows)								
Flex = production s	ystems that may alte	r from year to year						
Fixed = production	system that are empl	loyed every year						

PSD = production system, dry conditions PSN = production system, normal conditions PSW = production system, wet conditions

Table 2: Summary of the full model specification, by approach and deterministic/stochastic setting

EV	Eq.	EV, Stochastic	Eq.	SCA	Eq.	SCA, Stochastic	Eq.
$E[Y] = \sum_{\delta} \left[A^{\delta} \times Q^{\delta} \times (P - C)^{\delta} \right]$	(2)		(3)	$\begin{split} & E[Y] \\ & = \sum_{\delta} \sum_{S} \pi_{S} \left[A^{\delta} \times Q_{S}^{\delta} \times \left(P_{S}^{\delta} - C_{S}^{\delta} \right) \right] \end{split}$	(8)		(9)
Subject to:							
$\sigma^{20}/0.64 \le 800 \text{ EC}$	(10)	$VaR_{0.95} (\sigma^{20} / 0.64) \le 800 EC)$	(11)	$\sigma_{\rm s}^{20}/0.64 \le 800 \ {\rm EC}$	(12)	$VaR_{0.95} (\sigma_s^{20}/0.64 \le 800 \text{ EC})$	(10)
$\sum K \leq CAP$	(14)	$\sum K \leq CAP$	(15)	$\sum K_s \pi_s \leq CAP$	(16)	$\sum K_s \pi_s \leq CAP$	(11)
$wk \le fk$	(18)	$Va\delta_{0.95} (wk_{\varepsilon} \leq fk_{\varepsilon})$	(19)	$\overline{\mathbf{wk}}_{s} \leq \mathbf{fk}_{s}$	(20)	$Va\delta_{0.95} (wk_{S\epsilon} \leq fk_{s\epsilon})$	(21)
$A_k \delta_{15} \le AHort_k$	(22)	$A_k \delta_{15} \leq AHort_k$	(23)	$A_k \delta_{15} \leq A Hort_k$	(24)	$A_k \delta_{15} \leq AHort_k$	(25)
$A_k \delta_{116} \leq Atotal_k$	(26)	$A_k \delta_{116} \leq Atotal_k$	(27)	$A_k \delta_{122} \leq Atotal_k$	(28)	$A_k \delta_{122} \le Atotal_k$	(29)
$\sum L_{rk} \leq L_k$	(30)	$\sum L_{rk} \leq L_k$	(31)	$\sum L_{rk} \leq L_k$	(32)	$\sum L_{rk} \leq L_k$	(33)
$fk^{21} \ge 1,000 GL$	(34)	$Va\delta_{0.95} (fk^{21} \ge 1,000 GL)$	(35)	$fk_s^{21} \ge 1,000 \text{ GL}$	(36)	$Va\delta_{0.95} (fk_{s\epsilon}^{21} \ge 1,000 \text{ GL})$	(37)

Production System	Stat	e Contingent Wate	er Use	Normal (EV)
	Dry	Normal	Wet	
Citrus-H	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)
Citrus-L	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)
Grapes	(2.5, 5, 7.5)	(2.5, 5.0, 7.5)	(3.0, 6.0, 9.0)	(2.5, 5, 7.5)
Stone Fruit-H	(1.7, 3.3, 5)	(1.7, 3.33, 5.0)	(2.0, 4.0, 6.0)	(1.7, 3.3, 5.0)
Stone Fruit-L	(3.2, 6.4, 9.7)	(3.2, 6.4, 9.7)	(3.9, 7.7, 11.6)	(3.2, 6.4, 9.7)
Pome Fruit	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)
Vegetables	(0, 0, 0)	(2.0, 4.0, 6.0)	(3.0, 6.0, 9.0)	(0, 0, 0)
Cotton Flex	(0, 0, 0)	(2.5, 5.0, 7.5)	(2.5, 5, 7.5)	
Cotton Fixed	(2.5, 5.0, 7.5)	(2.5, 5.0, 7.5)	(2.5, 5, 7.5)	(2.5, 5.0, 7.5)
Cotton/Chickpea	(1.9, 3.8, 5.6)	(2.5, 5.0, 7.5)	(2.5, 5, 7.5)	
Cotton Wet	(0, 0, 0)	(0, 0, 0)	(3.0, 6.0, 9.0)	
Rice PSN	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)
Rice Flex	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	
Rice Wet	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	
Wheat	(0.8, 1.5, 2.3)	(0.8, 1.5, 2.3)	(0.9, 1.8, 2.7)	(0.8, 1.5, 2.3)
Wheat Legume	(0.8, 1.7, 2.5)	(1.3, 2.6, 3.9)	(1.6, 3.2, 4.7)	(0.8, 1.7, 2.5)
Sorghum	(2.0, 4.0, 6.0)	(2.0, 4.0, 6.0)	(2.4, 4.8, 7.2)	(2.0, 4.0, 6.0)
Oilseeds	(2.0, 4.0, 6.0)	(2.0, 4.0, 6.0)	(2.0, 4.0, 6.0)	(2.0, 4.0, 6.0)
Sheep Wheat	(3.7, 7.4, 11.0)	(2.4, 4.8, 7.1)	(1.7, 3.5, 5.2)	(3.7, 7.4, 11.0)
Dairy-H	(3.2, 6.3, 9.5)	(4.5, 9.0, 13.5)	(5.4, 10.8, 16.2)	(3.2, 6.3, 9.5)
Dairy-L	(3.0, 6.0, 9.0)	(5.0, 10.0, 15.0)	(6.0, 12, 18)	(3.0, 6.0, 9.0)
Γ	Notes: For both the	e state-contingent a	nd expected value	the deterministic
Ċ	lata is always the	middle number. If	all values 0 then the	ne commodity is
r	ot grown in that	region. If the value	s are 0 in states an	d >0 in others it
r	neans that the p	roduction system	has transitioned f	rom dryland to
i	rrigated. If the ce	ell is blank for the	EV that production	on system is not
F	ossible in the EV	model.		
H	I = intensive irriga	ation capital (i.e., di	rip lines)	
I	L = low irrigation of L	capital (i.e., furrows	s)	
F	Flex = production	systems that may al	ter from year to yea	ar
F	Fixed = production	system that are em	ployed every year	
F	PSN = production	system, normal con	ditions	

874	Table 3: Water Use by	State of Nature (ML): Cond	amine catchment example only
	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Confidential manuscript submitted to Water Economics & Policy

Table 4: Comparison of model runs by current climate, 550 ppm Climate Change and shifts to increased dry frequency, see Appendix A3 for details. Results shown for estimated water use (GL), the flow to the terminal node (Coorong), the salinity (Water Quality) at Morgan (the offtake for Adelaide's potable supplies), and the economic return from land allocation (Table 5). Data for stochastic runs is the 50th Percentile.

	Model Run		Water U	Jse (GL)			Coorong l	Flow (GL)	·		Salinity	' (EC)		Eco	onomic Re	turn (AU\$	5'm)
		Dry	Normal	Wet	Avg	Dry	Normal	Wet	Avg	Dry	Normal	Wet	Avg	Dry	Normal	Wet	Avg
	EV, Deterministic	0	9,162	0	9,162	0	6,221	11,753	6,221	0	228	222	228	\$0	\$2,591	\$0	\$2,591
	EV, Inputs Ex-ante	0	9,412	0	9,412	0	6,191	11,746	6,191	0	231	223	231	\$0	\$2,644	\$0	\$2,644
e	EV, Inputs Ex-post	0	7,065	0	7,065	1,256	7,833	13,475	7,833	380	158	166	158	\$0	\$2,270	\$0	\$2,270
nat	EV, State Ex-ante	0	9,368	0	9,368	3,858	760	11,755	760	203	1,045	222	1,045	\$0	\$2,591	\$0	\$2,591
lin	EV, State Ex-post	0	6,792	0	6,792	6,056	2,572	13,606	2,572	94	407	161	407	\$0	\$2,013	\$0	\$2,013
nt c																	
reı	SCA, Deterministic	5,849	8,930	11,757	9,162	1,287	6,383	10,482	6,594	288	235	285	260	\$1,085	\$2,644	\$3,872	\$2,701
Cul	SCA, Input Ex-ante	6,092	9,116	11,994	9,374	1,254	6,398	10,461	6,588	295	234	286	262	\$1,085	\$2,644	\$3,871	\$2,701
•	SCA Input Ex-post	5,517	8,013	10,763	8,339	1,772	7,170	11,323	7,336	214	190	243	211	\$1,026	\$2,396	\$3,590	\$2,480
	SCA, State Ex-ante	6,055	9,136	11,963	9,368	5,771	880	10,478	4,738	91	1,061	285	634	\$1,085	\$2,644	\$3,872	\$2,701
	SCA, State Ex-post	5,516	6,829	14,146	8,762	6,212	2,465	8,956	5,161	70	409	342	321	\$901	\$2,084	\$3,663	\$2,321
*	EV, Deterministic	0	9,000	0	9,000	0	3,756	8,117	3,756	0	350	311	350	\$0	\$2,502	\$0	\$2,502
gv	EV, Inputs Ex-ante	0	9,228	0	9,228	0	3,740	8,109	3,740	0	350	312	350	\$0	\$2,348	\$0	\$2,348
V (EV, Inputs Ex-post	0	7,853	0	7,853	0	4,703	9,119	4,703	0	262	253	262	\$0	\$2,292	\$0	\$2,292
55(EV, State Ex-ante	0	9,206	0	9,206	1,627	0	8,136	0	411	1,305	310	1,305	\$0	\$2,502	\$0	\$2,502
P	EV, State Ex-post	0	5,311	0	5,311	4,962	2,079	10,980	2,079	133	656	210	656	\$0	\$1,852	\$0	\$1,852
R(
ate	SCA, Deterministic	4,632	9,179	12,154	9,162	1,000	3,630	6,430	3,944	266	374	445	374	\$1,075	\$2,578	\$3,752	\$2,629
im	SCA, Input Ex-ante	4,842	9,392	12,369	9,375	997	3,625	6,424	3,939	268	375	445	374	\$959	\$2,348	\$3,447	\$2,400
∕ cl	SCA Input Ex-post	4,396	8,636	10,752	8,422	1,398	4,155	7,556	4,624	183	315	347	298	\$884	\$2,116	\$3,242	\$2,208
Чем	SCA, State Ex-ante	4,838	9,385	12,360	9,368	4,583	0	6,449	2,851	86	0	444	150	\$1,075	\$2,578	\$3,752	\$2,629
4	SCA, State Ex-post	3,687	5,293	15,032	7,894	5,641	2,097	4,570	3,548	51	440	664	429	\$869	\$1,853	\$3,472	\$2,142
A	SCA, Deterministic	3,492	10,535	14,234	9,162	3,409	5,260	8,748	5,402	87	297	367	248	\$1,279	\$2,809	\$3,786	\$2,546
Snc	SCA, Input Ex-ante	3,682	10,752	14,447	9,370	3,423	5,253	8,743	5,402	86	296	367	247	\$1,192	\$2,546	\$3,431	\$2,317
эnb	SCA Input Ex-post	3,194	9,599	12,919	8,342	3,863	6,059	9,813	6,151	62	247	308	204	\$1,048	\$2,355	\$3,281	\$2,148
re	SCA, State Ex-ante	3,698	10,741	14,440	9,368	7,866	0	8,745	4,109	42	1,538	368	855	\$1,279	\$2,809	\$3,786	\$2,546
Ĩ	SCA, State Ex-post	4,640	7,074	17,575	8,444	7,079	2,396	6,558	4,634	55	436	528	340	\$1,009	\$2,126	\$3,694	\$2,104

Notes: Avg = Average. Shaded areas show what occurs when EV allocations (i.e. average flows) are utilized as a basis for the SCA model to explore wat would occur if 'other' states eventuated. This highlights surplus flows that would be available and reallocated by the SCA model, and the adaptation that takes place. Average in the EV are therefore the 'Normal Values' to make the table easier to read.

Ex-ante is the plausible future solution. Ex-post is the complete information solution. Input is the quantity of water inputs required. State is the description of water supply.

0 salinity = as there was no water flowing there was no salinity. For 0 values for water use and economic return, the EV models do not generate these values

* The RCP 550 Average scenario denotes a 550 parts-per-million CO₂ representative concentration pathway, or a relatively high level of future climate change impact.

880 **Table 5:** Production system by state commodity ('000 hectares)

		Citru	Citrus	Grape	Stone	Pome	Veg	Cotton	Cotton	Cotton	Rice	Rice	Rice Wet	Wheat	Dairy	Dairy
		s-H	-L	S	Fruit- L	Fruit		Flex	Fixed	Wet	PSN	Flex			-H	-L
	EV, Deterministic	9	127	14	4	7	57	0	390	0	403	0	0	229	0	195
	EV, Inputs Ex-ante	9	127	14	4	7	57	0	390	0	403	0	0	229	0	195
е	EV, Inputs Ex-post	9	127	14	4	7	57	0	253	0	240	0	0	301	0	144
nat	EV, State Ex-ante	9	127	14	4	7	57	0	390	0	403	0	0	229	0	195
lin	EV, State Ex-post	9	127	14	4	7	57	0	132	0	238	0	0	275	0	191
nt c																
reı	SCA, Deterministic	0	136	72	4	7	0	438	0	243	392	0	0	33	24	186
, n	SCA, Input Ex-ante	0	136	72	4	7	0	438	0	243	392	0	0	33	24	186
	SCA Input Ex-post	0	136	72	4	7	0	304	41	240	314	39	0	67	24	139
	SCA, State Ex-ante	0	136	72	4	7	0	438	0	243	392	0	0	33	24	186
	SCA, State Ex-post	0	136	72	4	7	0	167	0	378	389	0	435	150	24	57
	EV, Deterministic	9	127	14	4	7	57	0	335	0	456	0	0	280	0	155
*	EV, Inputs Ex-ante	9	127	14	4	7	57	0	335	0	456	0	0	280	0	155
SA	EV, Inputs Ex-post	9	127	14	4	7	57	0	269	0	364	0	0	313	0	115
7 O.	EV, State Ex-ante	9	127	14	4	7	57	0	335	0	456	0	0	280	0	155
55	EV, State Ex-post	9	127	14	4	7	57	0	104	0	158	0	0	204	0	122
lge																
hai	SCA, Deterministic	0	135	72	4	7	0	423	0	244	253	213	0	33	24	147
e c	SCA, Input Ex-ante	0	135	72	4	7	0	423	0	244	253	213	0	33	24	147
ıat	SCA Input Ex-post	0	136	72	4	7	0	315	0	129	188	271	0	164	24	108
liii	SCA, State Ex-ante	0	135	72	4	7	0	423	0	244	253	213	0	33	24	147
0	SCA, State Ex-post	0	136	72	4	7	0	117	0	309	0	0	755	116	24	234
×	SCA, Deterministic	0	136	72	4	7	0	443	57	230	0	528	0	122	24	186
nc	SCA, Input Ex-ante	0	136	72	4	7	0	443	57	230	0	528	0	122	24	186
ant	SCA Input Ex-post	0	136	72	4	7	0	414	0	205	0	488	0	157	24	141
rec	SCA, State Ex-ante	0	136	72	4	7	0	443	57	230	0	528	0	122	24	186
F	SCA, State Ex-post	0	136	72	4	7	0	124	43	422	29	61	694	154	36	300
* The	550 Average scenario d	enotes a	550 parts-j	per-million	CO ² repre	esentative	concepti	ation path	way, or a re	elatively high	h level of	future clin	mate change	impact.		

Appendix Material

Description		State of Nature	
	Dry	Normal	Wet
Deterministic Normal		620	
Stochastic Normal		(97, 620, 985)	
Triangular Distribution (a, b, c)			
Deterministic SCA	359	620	802
Stochastic SCA	(97,358,620)	(359,620,803)	(620,803,985)
Triangular Distribution (a, b, c)			

Table A1: Illustrative Water Resource Data for Condamine only ('000 GL) Current Climate)

Table A2: Water Resource Data for Condamine only ('000 GL) Climate Change (550 Avg, 2050)

Description		State of Nature	
	Dry	Normal	Wet
Deterministic		564	
Stochastic		(88, 564, 896)	
Triangular Distribution (a, b, c)			
Deterministic SCA	326	564	730
Stochastic SCA	(88,326,564)	(326,564,730)	(564,730,896)
Triangular Distribution (a, b, c)			

There is constant water reduction in each corresponding cell. Full data sets available on request.

Table A3: Analysis Summary

Run	Description	Climate	State of N	State of Nature Frequen		
			Dry	Normal	Wet	
1	EV, Deterministic	Current		1.0		
2	EV, Inputs Ex-ante	Current		1.0		
3	EV, Inputs Ex-post	Current		1.0		
4	EV, State Ex-ante	Current		1.0		
5	EV, State Ex-post	Current		1.0		
6	SCA, Deterministic	Current	0.2	0.5	0.3	
7	SCA, Input Ex-ante	Current	0.2	0.5	0.3	
8	SCA Input Ex-post	Current	0.2	0.5	0.3	
9	SCA, State Ex-ante	Current	0.2	0.5	0.3	
10	SCA, State Ex-post	Current	0.2	0.5	0.3	
11	EV, Deterministic	550 Avg		1.0		
12	EV, Inputs Ex-ante	550 Avg		1.0		
13	EV, Inputs Ex-post	550 Avg		1.0		
14	EV, State Ex-ante	550 Avg		1.0		
15	EV, State Ex-post	550 Avg		1.0		
16	SCA, Deterministic	550 Avg	0.2	0.5	0.3	
17	SCA, Input Ex-ante	550 Avg	0.2	0.5	0.3	
18	SCA Input Ex-post	550 Avg	0.2	0.5	0.3	
19	SCA, State Ex-ante	550 Avg	0.2	0.5	0.3	
20	SCA, State Ex-post	550 Avg	0.2	0.5	0.3	
21	SCA, Deterministic	Current	0.3	0.5	0.2	
22	SCA, Input Ex-ante	Current	0.3	0.5	0.2	
23	SCA Input Ex-post	Current	0.3	0.5	0.2	
24	SCA, State Ex-ante	Current	0.3	0.5	0.2	
25	SCA, State Ex-post	Current	0.3	0.5	0.2	
EV= e	expected value					

SCA = State contingent analysis

Current climate = historical values

550 Avg = forecasted climate in 2050 under 550 ppm of carbon

State of Nature = examines the implication of how a state of nature is described

Inputs by state = describes the volume of water required to produce a state specific commodity

Table A4 Area Irrigated By State of Nature

	Description	S	tate of Nat	ture
		Dry	Normal	Wet
	EV, Deterministic		1,435	
	EV, Inputs Ex-ante		1,435	
e	EV, Inputs Ex-post		1,156	
nat	EV, State Ex-ante		1,435	
lin	EV, State Ex-post		1,053	
nt c				
reı	SCA, Deterministic	853	1,290	1,533
,ur	SCA, Input Ex-ante	853	1,290	1,533
\cup	SCA Input Ex-post	802	1,145	1,385
	SCA, State Ex-ante	853	1,290	1,533
	SCA, State Ex-post	838	1,005	1,818
	EV, Deterministic		1,444	
	EV, Inputs Ex-ante		1,444	
V g	EV, Inputs Ex-post		1,279	
V O	EV, State Ex-ante		1,444	
55	EV, State Ex-post		805	
ıge				
har	SCA, Deterministic	673	1,309	1,553
e cl	SCA, Input Ex-ante	673	1,309	1,553
nati	SCA Input Ex-post	702	1,288	1,417
lin	SCA, State Ex-ante	673	1,309	1,553
C	SCA, State Ex-post	591	708	1,772
A	SCA, Deterministic	607	1,577	1,808
nci	SCA, Input Ex-ante	607	1,577	1,808
ənt	SCA Input Ex-post	539	1,440	1,645
reç	SCA, State Ex-ante	607	1,577	1,808
Ē.	SCA, State Ex-post	780	965	2,081

	Description		St	State of Nature					
		Model	Dry	Normal	Wet				
ວ	Current Climate	EV	0	1,435	0				
	Current Climate	SCA	853	1,290	1,533				
isti	New climate RCP								
ini	550 Avg	EV	0	1,444	0				
irn (New climate RCP								
ete	550 Avg	SCA	673	1,309	1,553				
D	Frequency	SCA	607	1,577	1,808				
	Current Climate	EV	0	1,156	0				
	Current Climate	SCA	802	1,145	1,385				
	New climate RCP								
	550 Avg	EV	0	1,279	0				
uts	New climate RCP								
ıdu	550 Avg	SCA	702	1,288	1,417				
I	Frequency	SCA	539	1,440	1,645				
	Current Climate	EV	0	1,053	0				
	Current Climate	SCA	838	1,005	1,818				
	New climate RCP								
	550 Avg	EV	0	805	0				
e	New climate RCP								
tat	550 Avg	SCA	591	708	1,772				
S	Frequency	SCA	780	965	2,081				

Table A5 Compare Deterministic v Stochastic & Climate Change (Ex-post)

SCA production systems note to the model

The state-contingent approach examines how the state of nature (e.g. droughts and floods) influences the management strategy to alter the inputs used to produce state specific outputs. For example, shiraz grapes produced in periods of low water supply have more smaller berries than grapes produced with normal water supply. Smaller berries then increase the grape skin to moisture ratio and can produce a higher quality wine.

The transformation of commodities into SCA production systems allows for irrigation management practices to be reflected both within and between states of nature. As similar state of natures, with identical outcomes, can be combined to keep the state space small, the model has merged similar commodities with similar management strategies into generic production systems (see Citrus below) to reduce the model size.

The description of each of the 22 state-contingent production systems x is documented below and Table illustrates how the state-contingent production systems alter the inputs used and outputs obtained by state of nature. In Table , the multiplier for Z alters output, the term 'water' is a multiple for the water used and the heading 'VC' either increases or decreases the variable costs per Ha by the described dollar value. The Citrus production system is used to illustrate, how the variables Z, 'water' and 'VC' are used to transform the normal states production data to production data for the dry and wet state of nature.

The Horticultural State-Contingent Production Systems:

Citrus

The citrus production system is designed to reflect strategies used by grapefruit, lemon, lime, mandarin and orange producers to deal with changing states of water availability. Producers can utilize either –H or –L irrigation technology to produce citrus crops.

When compared to the normal state of nature, a Citrus-H producer operating in a dry state of nature, will allocate the same volume of water but receive a 20% reduction in output and face increased variable costs of \$20/Ha (Table). When the wet state of nature is experienced, the producer increases water consumption by 120%, in part to help flush salt away from the root zone. Yield is expected to increase by 20% per Ha in a wet state of nature and this then requires an additional expenditure of \$20/Ha to manage and harvest the crop (Table).

The state-contingent production systems reflect this via the reduction in output experienced in the dry state of nature. When compared to the normal state of nature, Citrus-L and Citrus-H output declines by 10% and 20% respectively when compared to the normal sate of nature.

Grapes

The grape production system reflects the changes in output (i.e. tons of grapes), water used and variable costs experienced by table and wine grape producers as they adapt to alternative states of nature.

Table A6 Data for the State-Contingent Productions

X	Production	Dry Multipliers and Costs				Normal	Wet Multipliers and Costs			
	System Name	Commodity	Ζ	Wate	VC	Commodity	Commodity	Ζ	Wate	VC
				r					r	
<i>x</i> 1	Citrus-H	Citrus-H	0.8	1.0	\$20	Citrus-H	Citrus-H	1.2	1.2	\$20
<i>x</i> 2	Citrus-L	Citrus-L	0.9	1.0	\$0	Citrus-L	Citrus-L	1.2	1.2	\$100
<i>x</i> 3	Grapes	Grapes	0.9	1.0	\$20	Grapes	Grapes	1.2	1.2	\$20
<i>x</i> 4	Stone Fruit-H	Stone Fruit-H	0.8	1.0	\$20	Stone Fruit-H	Stone Fruit-H	1.2	1.2	\$20
<i>x</i> 5	Stone Fruit-L	Stone Fruit-L	0.9	1.0	\$0	Stone Fruit-L	Stone Fruit-L	1.2	1.2	\$100
<i>x</i> 6	Pome Fruit	Pome Fruit	0.9	1.0	\$20	Pome Fruit	Pome Fruit	1.2	1.2	\$20
<i>x</i> 7	Vegetables	Melons	1.0	1.0	\$0	Vegetables	Fresh Tomatoes	1.0	1.0	\$0
<i>x</i> 8	Cotton Flex	Dryland Cotton	1.0	1.0	\$0	Cotton Flex	Cotton	1.0	1.0	\$100
x9	Cotton Fixed	Cotton Fixed	1.0	1.0	\$0	Cotton Fixed	Cotton Fixed	1.0	1.0	\$0
<i>x</i> 10	Cotton/Chickpea	Chickpea	1.0	1.0	\$0	Cotton Flex	Cotton	1.0	1.0	\$100
<i>x</i> 11	Cotton Wet	Dryland Cotton	0.8	1.0	\$0	Dryland Cotton	Cotton	0.9	1.2	\$100
<i>x</i> 12	Rice PS	Rice PSD	1.0	1.0	\$0	Rice PSN	Rice PSW	1.1	1.1	\$0
<i>x</i> 13	Rice Flex	Dryland Wheat	1.0	1.0	\$0	Rice PSN	Rice PSW	1.0	1.2	\$100
<i>x</i> 14	Rice Wet	Dryland Wheat	1.0	1.0	\$0	Dryland Wheat	Rice PSW	0.95	1.2	\$100
<i>x</i> 15	Wheat	Wheat	0.8	1.0	\$0	Wheat	Wheat	1.1	1.2	\$50
<i>x</i> 16	Wheat Legume	Wheat Legume PSD	1.0	1.0	\$0	Wheat Legume PSN	Wheat Legume PSW	1.0	1.0	\$0
<i>x</i> 17	Sorghum	Sorghum	0.8	1.0	\$0	Sorghum	Sorghum	1.1	1.2	\$100
<i>x</i> 18	Oilseeds	Oilseeds	0.8	1.0	\$0	Oilseeds	Oilseeds	1.1	1.0	\$0
x19	Sheep Wheat	Sheep Wheat PSD	1.0	1.0	\$50	Sheep Wheat PSN	Sheep Wheat PSW	1.0	1.0	\$0
x20	Dairy-H	Dairy-H	0.9	0.7	\$300	Dairy-H	Dairy-H	1.5	1.2	\$0
x21	Dairy-L	Dairy-L	0.8	0.6	\$300	Dairy-L	Dairy-L	1.2	1.2	\$0
<i>x</i> 22	Dryland	Dryland	1.0	1.0	\$0	Dryland	Dryland	1.0	1.0	\$0

H= intensive irrigation capital (e.g. drip lines). L = low irrigation capital (e.g. furrows).

1 Stone fruit

Stone fruit production systems reflect the management systems used by apricot, cherry, nectarine, peach
and plum producers as they alter their inputs by state of nature.

5 **Pome Fruit**

6 The pome fruit state-contingent production system detail changes in inputs and outputs by state of nature,
7 for the apple and pear industry in the MDB.
8

9 Vegetables

The term vegetables is used to describe a range of regional irrigated vegetable production alternatives,
including asparagus, beetroot, broccoli, cabbage, capsicum, carrot, cauliflower, eggplant, garlic, lettuce,
onion, potato, pumpkin, rockmelon, sweet corn, tomato, watermelon and zucchini.

13 14

15

16

17 18

20

27

35

40

4

"In the normal state, the vegetable production activity is represented by an average return from a range of alternative irrigated vegetable crops. In the dry state, water resources are conserved by planting only a dryland rockmelon crop. In the wet state, all resources are transferred to producing tomatoes for the fresh market" (Quiggin et al. 2010, p. 542).

19 **Broadacre commodities:**

21 Cotton (Fixed Rotation) or Cotton Fixed

"To assist pest management, and sustain soil fertility, cotton is produced on a rotation system,
represented here as allowing for two years of irrigated cotton production and one year of dryland
agriculture over a three-year cycle. The simplest way of managing such a system is a three-field
rotation, in which one-third of the land area is rotated out of irrigation each year" (Adamson,
Mallawaarachchi & Quiggin 2007, p. 270).

28 Cotton (Flexible Rotation) of Cotton Flex

"We also model an alternative rotation system in which the entire land area is allocated to dryland
agriculture in dry years, and to cotton production in wet years. Since this activity requires more
active management it incurs a cost penalty relative to the Fixed Rotation activity which has the
same average yield. However, if producers face variable state-contingent prices for water (or
variable shadow prices associated with constraints), they may choose to adopt this activity"
(Adamson, Mallawaarachchi & Quiggin 2007, p. 270).

36 Cotton/Chickpea

The cotton/chickpea state-contingent production system mimics the 'Cotton Flex' production option but instead of allocating resources to a dryland crop in the dry state of nature, inputs are allocated towards an irrigated chickpea crop.

41 **Cotton Wet**

The 'cotton wet' production system is designed to model opportunistic irrigation practices that occur in
the NMDB when supplementary property rights are most secure in the wet state of nature (Section **Error! Reference source not found.**). For this production system...

45 "[t]he producer produces an irrigated cotton crop only in the wet state of nature. In other states
 46 of nature, dryland grain cropping is undertaken.(Quiggin et al. 2010, p. 542).

47 48 **Rice PSN**

49 The Rice PSN was designed to illustrate how rice is produced in the Southern Murray-Darling Basin

50 (SMDB) and is similar in design to the cotton fixed rotation. This production system divides each Ha of

51 Rice PSN, into 1/3 of the area planted to rice and the remaining 2/3 grows wheat, to reflect industry

- 52 practices. In a normal state of nature, once the rice crop is harvested, farmers take advantage of residual
- soil moisture by producing a vegetable crop, and 10% of this production is assumed to be derived from
 the Rice PSN. In the dry state (Rice PSD) this vegetable crop cannot be produced and in the wet state of
- 55 nature (Rice PSW), 15% of vegetable returns are due to the rice crop.
- 56

57 Rice Flex

58 The 'Rice Flex' production system was designed to mimic the 'Cotton Flex' system for the rice industry 59 as it allows producers to allocate resources towards producing a dryland wheat crop in the dry state of 60 nature.

61 62 **Rice Wet**

The 'Rice Wet' provides the opportunity for the rice industry to respond to years when water is plentiful. Like the 'Cotton Wet' system, irrigation only occurs in the wet state of nature and in all other states of nature a dryland wheat crop is produced. To reflect this opportunistic behavior by non-specialist producers, a yield penalty of 5% has been applied (Table).

67 68 **Wheat**

69 The wheat system produces an irrigated crop of wheat in every state of nature.

7071 Wheat/Legume

Rotation cropping practices provide output benefits and greater efficiency of input use; as each crop in the rotation requires different bundles of inputs, adaption to a state can be inferred if resources are reallocated. To represent this management option the Wheat/Legumes production system was created and 'Legume' is a default commodity derived from the available legume crops each k, which includes adzuki bean, chickpea, fava bean, mungbean, navy bean, peanut and soybean.

77

82

86

The farmer's adaption to water availability is represented by altering the percentage of land dedicated to the wheat and legume crop in each Ha and to reflect the benefits of investing in rotation wheat output is increased by 10% in each state of nature. Land allocation between wheat and legumes occurs at a rate of 50/50, 100/0 and 30/70 for the normal, dry and wet state of nature respectively.

83 Oil Seeds

The oil seed production system provides the opportunity for irrigators to invest in producing canola and/or sunflowers, depending on what can be produced in each k.

87 Sheep/Wheat

"This production activity represents a state-contingent production plan where producers allocate
resources between sheep and wheat production in response to climatic conditions and market
forces. The production mix between the two outputs is 50% wheat and 50% sheep in the normal
state, 90% sheep and 10% wheat in the dry state, and 30% sheep and 70% wheat in the wet state.
Effort is placed in keeping the breeding stock alive during the dry state while in wet states there
is plenty of fodder available on the non-irrigated pasture, and irrigated land can be allocated to
wheat production"(Quiggin et al. 2010, p. 542).

96 Dairy

97 During the Millennium drought one adaption strategy employed by dairy producers was the trading of 98 water to purchase feed. The 'Dairy' production system modelled here does not include the capacity to 99 trade water in the dry state but rather assumes that all water is used on farm to reflect the ability of dairy 100 producers to respond to water supplies by increasing or decreasing the total area irrigated within a 101 property and compensating feed deficiencies by purchasing feed. The data used to construct Chart A1

102 to describe the changing area irrigated is for illustration purposes only.

- 103 A dairy producer has the choice of producing dryland or irrigated pasture on their farm. To represent the
- 104 decision maker's response to the availability of water, the proportion of each Ha that is irrigated alters
- by state of nature. Using the data for Dairy- H (Table), the water multiplier for the dry and wet state of 105 nature is 0.7 and 1.2, respectively. The impact of this state described water multiplier then means that in 106
- a dry state of nature only 40% of each Ha is irrigated, in the normal state of nature 80% of the Ha is 107
- irrigated and in the wet state of nature the entire Ha is irrigated (Chart A1). To compensate for the lack 108
- 109 of feed in the dry state of nature, an additional \$300 is spent per Ha purchasing supplements (Table) but
- despite feeding cattle, output decreases by 10%. But in a wet state of nature, no additional feed is 110 required and output increases by 50%.
- 111 112

113 Chart A1 Proportion of a Hectare Irrigated by State of Nature (%)

115

- 116
- 117

118