
 

ACCEPTED VERSION 
 

David Adamson and Adam Loch 
Overcoming deterministic limits to robustness tests of decision-making given 
incomplete information: the state contingent analysis approach 
 Water Economics and Policy, 2022; 8(4): 2240011 

 

Electronic version of an article published as Water Economics and Policy, 2022; 8(4): 
2240011. DOI: http://dx.doi.org/10.1142/S2382624X22400112 

© World Scientific Publishing Company. https://www.worldscientific.com/worldscinet/ijcm  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/137740 

PERMISSIONS 

http://www.worldscientific.com/page/authors/author-rights  

Author accepted manuscript 

3. As authors of a journal article, (other than authors mentioned above), you may post the accepted 

author manuscript on your personal website, your company or institutional repository, not-for-

profit subject-based preprint servers or repositories of your own choice or as stipulated by the 

Funding Agency and may share the article in private research groups including those on SCNs 

which have signed up to the STM sharing principles, after an embargo of 12 months from the 

online publication date of the Version of Record.  

The private research groups must be formed by invitation for a specific research purpose and be 

of a size that is typical for research groups within the discipline. Sharing of articles must be 

limited to members of the group only. The SCNs which have signed up to the sharing principles 

are required to provide COUNTER compliant usage data to World Scientific by agreement.  

Please provide the following acknowledgement along with a link to the article via its DOI if 

available: 

o Electronic version of an article published as [Journal, Volume, Issue, Year, Pages] 

[Article DOI] © [copyright World Scientific Publishing Company] [Journal URL]  

The Digital Object Identifier (DOI) of your article can be found on the relevant webpage of 

WorldSciNet where your article is posted.  

The above permissions apply to authors whose articles are to be published by World Scientific 

and authors who have purchased a copy or received a complimentary copy of their published 

article.  

This policy does not apply to pay-per-view customers and subscribers, who should adhere to 

their respective agreed policies 

26 March 2024 

http://dx.doi.org/10.1142/S2382624X22400112
https://www.worldscientific.com/worldscinet/ijcm
http://hdl.handle.net/2440/137740
http://www.worldscientific.com/page/authors/author-rights
http://www.howcanishareit.com/
http://doi.org/
http://doi.org/


Overcoming deterministic limits to robustness tests of decision-making given 1 

incomplete information: the state contingent analysis approach 2 

Adamson, David† and Loch, Adam†* 3 

† Centre for Global Food and Resources, The University of Adelaide, Adelaide, South Australia, 4 

5005 5 

* Corresponding author: Adam Loch adam.loch@adelaide.edu.au | P: +61 8 8313 9131  6 

ORCID: David Adamson (0000-0003-1616-968X); Adam Loch (0000-0002-1436-8768) 7 

Abstract 8 

Incomplete information may result in multiple factors combining to jointly affect the consequences of 9 
decision-making. The typical response to incomplete information has been tests of robustness and a 10 
fixed decisions’ capacity to withstand a wide variety of future conditions. But what of reversed contexts, 11 
where the revealed future alters decision-making via experience, learning and innovation such that the 12 
decision itself changes? In this paper we contrast a commonly applied expected value robustness metric 13 
to state contingent analysis which allows for learning and innovation. State contingent analysis views 14 
robustness as how decision-makers achieve profits across all future states by reallocating resources ex 15 
post to maximize payoffs and/or minimize losses via outputs that are conditionally specific. 16 
Consequently, the state-contingent approach enables researchers to identify the benefits and constraints 17 
of resource reallocation—rather than fixed decision-making—over plausible scenarios. Within SCA, 18 
scenarios can thus be uncoupled from the historical averages to explore rare events, even if never before 19 
experienced, including thin- and fat-tailed probability distribution outcomes and their impact on 20 
decision-making, innovation and future solutions. A case study assessment of water resource 21 
management in a large river basin provides the basis for our comparison. We find that expected value 22 
models mask innovation and adaptation reactions by decision-makers in response to external stimuli 23 
(e.g., increased droughts) and under-represent water reallocation outcomes. Conversely, state contingent 24 
models represent and report decision-maker reactions that can be more readily interpreted and linked to 25 
stimuli including policy interventions, expanding the study of complex human-water systems. 26 
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Key Points: 29 

• Current robustness tests of decision-making do not allow for feedback meaning innovation and 30 
modelling adaptation responses are constrained 31 

• Adaptation to climate change under policy design, assessment and modification requires 32 
effective modelling approaches reflecting innovation/non-deterministic pathways 33 

• We suggest state contingent analysis as a modelling alternative which better illustrates learning 34 
and the need for decoupled plausible scenarios in the climate and water policy space 35 
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Introduction 44 

In the long-run everything changes but how that will occur, and how individual decision-makers 45 

with flexible options may respond to change options, is yet to be revealed. Climate change is a 46 

prime example (Kandlikar, Risbey, & Dessai, 2005) where future water resources will change 47 

based on probabilistic (risky) and non-probabilistic (uncertain) outcomes that may be difficult 48 

to accurately define and quantify for relevant scientific and social factors from a global to local 49 

scale. Where incomplete information is part of the quantitative calculation researchers have 50 

come to rely on expected outcomes to system changes as a basis for decision-making (McPhail 51 

et al., 2018). However, over long time horizons (e.g. 70-100 years) our capacity to combine 52 

multiple factors is especially challenging (Maier et al., 2016). This has led researchers to adopt 53 

processes capable of identifying plausible future scenarios without necessarily ranking their 54 

likelihood (Döll & Romero-Lankao, 2017). As pointed out by several studies (see for example 55 

Herman, Reed, Zeff, & Characklis, 2015; Kwakkel, Eker, & Pruyt, 2016), this approach has 56 

resulted in tests of decision robustness in the face of incomplete information via alternative 57 

metrics, such that the chosen solution will withstand a wide variety of outcomes (i.e., robustness 58 

or resilience to change). However, this represents non-adaptation to emerging realities. In other 59 

words, a decision-maker maintains their adopted solution no matter the realized future 60 

outcomes. While applicable for some large-scale investments, this approach may not represent 61 

how individuals with flexible choices respond to protect their capital. 62 

Robustness metric calculation involves specifying alternative solutions (e.g. policy 63 

options), performance outcomes (e.g. minimum cost), and plausible future conditions/scenarios 64 

under which the solution/performance interaction will occur. While iterative processes to 65 

redesign a solution may be undertaken to improve robustness, it will be conditional upon how 66 

the future unfolds. But the ultimate aim is to define and test how expected consequences related 67 

to the selected solution and/or to minimize any undesirable outcomes (Kwakkel et al., 2016). 68 

Robustness metrics commonly applied include i) expected values of performance across a range 69 

of scenarios, ii) satisficing scenarios with acceptable performance relative to thresholds, iii) 70 

regret-based differentials between selected option performance given plausible future outcomes 71 

and the best possible option for those conditions, and iv) higher-order moments such as variance 72 

and skewness that inform performance across multiple scenarios. All of these metrics reflect 73 

varied levels of risk aversion, and differ in how they define and deal with robustness (McPhail 74 

et al., 2018). 75 

However, when decision-makers respond to incomplete information via adopting flexible 76 

management solutions surely this differs from existing fixed-solution choice robustness metric 77 

calculations. That is, where revealed states of nature affect decision-making via feedback or 78 

adaptation at local/small-scale levels, Ben-Tal et al.’s (2009) deterministic and set-based factors 79 

which define the state of the world must also change. Any movement away from set paths and 80 

historic values increases the complexity of factors to derive metrics for, and incorporate into, 81 

robustness tests. This is because complex systems may react to external stimuli, especially when 82 

decision innovation is supported over routine choices (Jean-Paul Chavas & Nauges, 2020; Dow, 83 

2020). In such contexts learning and innovation is not only expected for traditional perspectives 84 

of robustness or resilience, it is also more likely where decision-makers regularly adapt (e.g. 85 

operational or strategic choices versus long-term infrastructure or hydrological investments). 86 

Learning and adaption will also depend on individual experience and recognition by each state 87 

of nature (Goldstein & Gigerenzer, 2002). A critical example of these adaptation concepts is 88 

water use and management given common variability in supply/demand and a significant 89 



connection to human and natural systems. Thus, where information on complex economic, 90 

social and physical environments is incomplete we may need to study human-water systems in 91 

more general and alternative ways to improve our explanatory and scenario development 92 

capability (Sivapalan et al., 2014). 93 

This is because complex interrelated systems provide scope for unintended consequences 94 

to both public and private decision-making (Dow, 2020). For example, Pindyck (2011) and 95 

Quiggin (2019) describe the relevance of correctly identifying and describing impacts of thin- 96 

or fat-tailed probability distributions which drive different decision solutions and performance 97 

objectives—and ultimately a cumulative risk-sharing utility (Quiggin, 1982). In such cases, 98 

information about distribution tails for key variables should be quantified or assigned a level of 99 

confidence (Mastrandrea et al., 2010) to ensure the data is taken into account (e.g. separately 100 

defined drought states) including measures that separate dispersion and means to provide 101 

valuable trade-off information (Kwakkel et al., 2016). Thus, when modelling new pathways 102 

that stem from innovation to decision-maker routines it will be necessary that the role of 103 

institutions, policy-makers and any firm/household decision-makers be included (Quiggin, 104 

2019) such that public/private investment decisions can be pivoted to effectively target, mitigate, 105 

prevent or adapt to future climate change shocks (Mazzucato, 2013); currently the tails of the 106 

distribution. 107 

In this paper we examine an additional robustness metric model that allows the study of 108 

reversed interactions between revealed states of nature and altered decisions; the state 109 

contingent analysis (SCA) approach. The key to SCA is that it separates the future state signal 110 

from the response to that future state, allowing for profit maximizing/loss minimizing outcomes 111 

to be determined from alternative individual management responses (i.e. reallocation of inputs). 112 

SCA assumes that we can completely describe plausible futures into a set of mutually exclusive 113 

states of nature. For example, in the case of this paper we know that future water supply can 114 

either be what we have expected over the long run (i.e. normal), greater than anticipated (i.e. 115 

wet); or less than we require (i.e. dry). While the decision-maker may have some awareness of 116 

the frequency of each state of nature, they do not have the ability to influence which state occurs 117 

However, for each state of nature, we can describe a set of management options that require a 118 

set of inputs, and each management strategy provides a state-described outcome. Therefore, 119 

once the state is revealed, decision-makers have complete information on how to respond 120 

(Chambers and Quiggin 2000). 121 

In SCA modelling robustness is viewed as how decision-makers adapt to conditions by 122 

reallocating resources, maximizing payoffs (or minimizing losses) in response to state 123 

outcomes due to inductive reasoning, or experiencing the failure of existing routines and a need 124 

to innovate in response (Grant & Quiggin, 2012). When we understand the payoffs over 125 

different states of nature we are better placed to identify the benefits over the plausible scenarios 126 

(Arrow, 1953) and can incorporate states of nature based on thin- or fat-tailed conditions. We 127 

then have the capacity to explore how management solutions can be designed to respond to 128 

known state of nature frequencies, and explore how new solution decisions change in response 129 

to external stimuli and altered reallocation or payoffs. This capacity then also allows for the 130 

payoff of current and future strategies to be explored when states alter, or new states that have 131 

not been previously experienced come to fruition. Following Goldstein and Gigerenzer (2002), 132 

learning is state dependent and representable through the introduction of an error term defining 133 

a stochastic range. As experience increases, we can reduce the size of the error term, and this 134 

represents learning and adaption. 135 

Having detailed the SCA approach we then compare its results to that of a common 136 

robustness metric in the literature, the expected value (EV) method, and evaluate the insights 137 



these alternative approaches provide for state of nature drivers on learning/innovation outcomes 138 

in decision-making. This process allows us to answer three questions. First, is it possible to 139 

adapt the perfect foresight SCA model used by Adamson et al. (2009) through an incorporation 140 

of stochastic bounds to represent incomplete information problems such as climate change 141 

adaptation, and test robust decision-making? Second, if this is possible, what can we learn from 142 

comparing stochastic bounded SCA model results to perfect foresight EV models of how 143 

decision-makers’ may innovate/learn to reallocate water resources in response to future climate 144 

change? Third, what do these results suggest for robust metric modelling of decision-making 145 

in complex interrelated system settings under incomplete information? Decision-making and 146 

innovation/learning insights from comparing these modelling approaches is based on a case 147 

study of agricultural production and land/water use reallocation choices in Australia’s Murray–148 

Darling Basin (MDB). Climate change in the MDB illustrates a need to shift from routine to 149 

innovative choices where future outcomes may be known (e.g., decreased rainfall), but the full 150 

set of choices (both allowing and motivating innovative adaptation) remains incomplete. We 151 

begin with a description of the MDB and its production/water systems as a basis for the model 152 

data before shifting to an explanation of the two analytical approaches. 153 

2 Study context: Australia’s MDB 154 

In Australia’s Murray-Darling Basin (MDB) water resources are over-allocated. On average 155 

the MDB has 25,467GL (gigalitres or one billion litres) of conjunctive water resources (runoff 156 

rather than river or storage inflows) that contributes to annual allocable water resources shared 157 

between users. This volume is primarily derived from rainfall (23,925GL) and groundwater 158 

aquifers (1,424GL), while 1,118GL are transferred into the MDB from the Snowy Basin 159 

(Adamson, Quiggin, & Quiggin, 2011). However, averages are misleading when dealing with 160 

water resources. The MDB has the second most variable water flows in the world (McMahon 161 

& Finlayson, 1991) and the Darling River is the most variable river system globally (Khan, 162 

2008). To access these resources approximately 19,300GL of water right entitlements have 163 

been issued, but the annual conjunctive and allocable water resources average around 11,000GL 164 

per annum (BoM, 2020). This over-allocation creates conflict between economic, social and 165 

environmental users, and climate change is expected to reduce the future volume of water 166 

available exacerbating that conflict. Critically for the purposes of our case study, any 167 

misallocation of water resources will increase fragility of economic, social and environmental 168 

systems and lower their capacity to respond effectively. 169 

As stated above, a prime example of plausible future states of nature in the MDB is 170 

climate change which is expected to increase the frequency of MDB extreme flood and drought 171 

events. Both extreme events will be triggered by altered spatial and temporal patterns of rainfall, 172 

but the general consensus for Australia is that droughts will become more frequent and more 173 

severe (IPCC, 2018). As 88 per cent of irrigation supplies in the Basin are derived from surface 174 

flows (Adamson et al., 2011) understanding future rainfall and runoff patterns is critical. 175 

However, outcome predictions are bounded by the complexities involved in upscaling and 176 

downscaling climate models (Berrocal, Craigmile, & Guttorp, 2012; Whetton, Grose, & 177 

Hennessy, 2016). This scaling issue creates confusion and considerable incomplete information 178 

for local and smaller-scaled decision-makers, as well as those charged with managing the 179 

resources at basin scale. For example, if we use proportional downscaling models based on an 180 

assumption that four per cent of MDB rainfall becomes surface runoff (Australian Bureau of 181 

Statistics, 2008) we could assume a linear relationship between rainfall to runoff. However, 182 

Austin et al. (2010) found that this relationship is not linear. The spatial and temporal nature of 183 

rainfall and the landscape rainfall-runoff attributes incur an elasticity of two to three-times (i.e., 184 

a 10% decline in rainfall equates up to a 20 to 30% reduction in runoff), making future natural 185 



variability predictions and the identification of viable economic, social and environmental 186 

solutions difficult. This problem statement may be served by the plausible future robustness 187 

metrics described above. 188 

But new plausible futures will shape the bio-physical characteristics of surface runoff and 189 

soil moisture and possibly fall outside past or current decision-making experience. Further, 190 

where decision-makers fail to correctly identify and parameterize these future production inputs 191 

(e.g., water) and outputs (i.e., changing comparative advantage) then economic, social and 192 

environmental capital will all be similarly exposed (Kingwell & Farre, 2009). To prevent capital 193 

loss Jodha (1991) argues decision-makers must incorporate flexibility into their decision 194 

systems and rapidly innovate based on past and new information when signals are ‘ecologically 195 

rational’ (Goldstein & Gigerenzer, 2002). However, as Mallawaarachchi and Foster (2009) and 196 

Loch et al. (2012) discuss, any adaptation to climate signals is dependent on the flexibility of 197 

institutional frameworks and available solutions (e.g., capacity to trade water), the decision-198 

maker’s cognitive capacity (e.g., bounded rationality or attitude to learning), and existing 199 

production system constraints (e.g., perennial versus annual cropping systems)—issues not 200 

typically represented by or incorporated into the traditional robustness metrics described earlier. 201 

In this paper we argue that by explicitly representing what we understand about plausible future 202 

states, alternative public/private capacity to recognize those states, and incomplete (non-203 

deterministic) response sets applicable to these settings we can identify when/how institutional 204 

or decision-maker solutions fail—and innovative decisions with increased adaptive flexibility 205 

(robustness). This flexibility should theoretically lead to robust outcomes which not only adapt 206 

to past and new plausible scenarios, but also provide greater capacity to respond to future events. 207 

3 Modelling incomplete information and resource (re)allocation 208 

With this context in mind and, given our focus on robustness tests, we next detail the EV and 209 

SCA approaches used in our comparisons. Each approach involves a deterministic (complete 210 

information) and stochastic (plausible) model specification. To frame our resource reallocation 211 

analysis—which is a focus of traditional economic study—we begin with a general discussion 212 

of how economic modelling deals with incomplete information. 213 

3.1 Traditional production economics approaches 214 

Incomplete information in economics is typically modelled via sensitivity analysis to explore 215 

the mean and variance of probability distributions that positively/negatively impact 216 

costs/benefits (Merrifield, 1997). However, in such analyses the decision-maker remains 217 

passive to external stimuli and incapable of innovation/learning or operating within nonlinear 218 

parameters. Downside risk has motivated economic researchers to expand beyond mean-219 

variance approaches (e.g., by including skewness) to explore innovation/technology adoption 220 

impacts on our thin- or fat-tailed payoff distributions (Jean-Paul Chavas & Nauges, 2020). For 221 

example, in production economic applications, modelling resource reallocation often involves 222 

a passive decision-making response based upon the mean and an error term. This formed the 223 

basis of Just & Pope’s (1978) critical review of stochastic production functions where the 224 

general form of their model is: 225 

𝒚 = 𝒇(𝑿, 𝜺). (1) 226 

The error term (𝜀)  provides a stochastic description of final output based on set 227 

combinations of inputs (𝑋). However, the error term is frequently based on past data where 228 

known mean and variance parameterize a probability distribution function. Monte-Carlo 229 

simulations allow for a series of outcome-runs to determine the likelihood of investment 230 

decisions making a return, given expected pricing outcomes. Taking these issues into account, 231 



Just and Pope concluded that while the generalized function is appropriate for empirical work, 232 

it remains unsatisfactory for dealing with plausible futures. Prior to this, Rothschild & Stiglitz 233 

(1970, 1971) noted the limitations of relying on mean-variance by illustrating the results of 234 

choosing between variables with the same expected value, but different distributions. A critical 235 

limitation, commonly known as Mean Preserving Spread, identifies how alternative weights in 236 

the distribution of tails can result in investors choosing riskier rather than safer investments by 237 

assuming the decision-maker remains passive to signals provided. As discussed, Pindyck 238 

(2011) argues climate change events can have thin- or fat-tailed outcomes and may transition 239 

between these two outcomes; possibly within short time frames due to the complex systems 240 

involved. Thus, modelling which fails to account for these plausible outcomes may represent a 241 

decision-maker (e.g., farmer) as one who refuses to adapt in the face of required change no 242 

matter the signal; which as discussed is unrealistic given different approaches to 243 

innovation/learning. Despite this conclusion, the use of stochastic production functions is 244 

common within the literature when dealing with production decisions under incomplete 245 

information. We detail a common modelling approach below. 246 

3.2 Expected value modelling approaches 247 

In expected value (EV) models future economic return 𝐸[𝑌] is calculated by multiplying each 248 

possible outcome by the likelihood it will occur and then summing those values to provide a 249 

long-run average or mean. In a simple application/equation, deterministic parameters are used. 250 

For example, agricultural decision-makers will maximize returns with respect to available area 251 

𝐴  of production systems ( 𝛿 ). 1  Final returns are subject to yield 𝑄 , market prices 𝑃  and  252 

production costs 𝐶 (Equation 2): 253 

𝜠[𝒀] = ∑ [𝑨𝜹 × 𝑸𝜹 ×  (𝑷 − 𝑪)𝜹 ]𝜹  (2) 254 

This then provides a single point estimate of an outcome (Figure 1a). In such a world we 255 

are modelling complete information. However, we can relax the deterministic equation above 256 

and adapt it to climate change problems—as an example of incomplete information—by 257 

incorporating stochastic representations via the addition of an error term 𝜀 (as in Figure 1b) to 258 

describe final outputs based on random combinations of inputs, and to represent plausible 259 

futures (Equation 3). We keep 𝑃 constant to minimise multiplicative uncertainty to explore how 260 

the availability and demand for water alters decision-making between different models: 261 

𝜠[𝒀𝜺] = ∑ [ 𝑨𝜺
𝜹 × 𝑸𝜺

𝜹 × (𝑷𝜹 − 𝑪𝜺
𝜹) ]𝜹  (3) 262 

Recall that stochastic representations acknowledge the inherent natural variability within 263 

a system but also assume decision-makers do not innovate/learn in response to external stimuli, 264 

thereby potentially misallocating resources (Chambers & Quiggin, 2000; Chavas, Chambers, 265 

& Pope, 2010). However, this version of the model is more comparable to alternative SCA 266 

approaches for determining how decision-makers may reallocate resources in response to a 267 

changing climate. 268 

3.3 State contingent analysis modelling approaches 269 

Early SCA studies used the term ‘states of nature’ when discussing the assessment of 270 

production choices under exogenous plausible futures. SCA allows for active decision-making 271 

 
1 For the models three terms are critical: 21 production system (𝛿) choices in total for state contingent modelling; 

for each production system there is a defined commodity (M) dependent on states that defines the inputs and 

outputs by that state; and 16 production systems for the EV modelling which are based on normal state production 

systems only. See Table 2 which describes these systems and the adaptation contrast between SCA and EV. 



responses to revealed or anticipated future states of nature (e.g., climate change impacts such 272 

as increased frequency of drought events). It therefore reduces problems of incomplete 273 

information and resource misallocation that could be driven by applications of a stochastic EV 274 

model (Just & Pope, 1978). 275 

The earliest work was undertaken by Arrow (1953) and Debreu (1959), providing 276 

capacity to represent how decision-makers respond to realized and/or plausible future states 277 

(e.g., drought/flood events). Graham (1981) used this approach to explore farmers’ willingness 278 

to pay for a public dam project that provided water supply in dry states of nature, and flood 279 

mitigation in wet states. However, it was Hirshleifer’s (1965, 1966)2 work that articulated clear 280 

differences between dominant mean-variance approaches and state of nature representations of 281 

incomplete information risk. According to Hirshleifer (1965), state of nature approaches 282 

remove the “vagueness” (pg. 534) associated with some robustness test methodologies, as it 283 

allows the decision-maker to precisely identify both the natural endowments provided in a given 284 

state and the factors of production required to obtain an output in that state of nature. This 285 

finding has been reiterated in more recent studies (e.g. Adamson & Loch, 2021; Hildebrandt & 286 

Knoke, 2011). 287 

Chambers and Quiggin (2000) subsequently extended the state of nature approach by 288 

merging it with dual optimisation to illustrate how resource allocations represent adjusting input 289 

use in all states by time, place and type (Rasmussen, 2003) 3. Following this work, the state of 290 

nature approach became the SCA approach. In the SCA approach, nature (𝛀) defines the state 291 

space that can be divided into a series of states of nature (𝑠) to define real and mutually-292 

exclusive sets (S) describing plausible futures (𝛀 = {1, 2, … , 𝑠, … , 𝑆}) . Importantly the 293 

decision-maker has no ability to influence which 𝑠 occurs; s is determined exogenously (Figure 294 

1c where triangles represent distribution by dry, normal and wet states). Further, the decision-295 

maker’s subjective belief about the frequency (𝝅) of each 𝑠 occurring is a probability vector 296 

described by (𝝅 = 𝜋1, … , 𝜋𝑠). However, for each 𝑠 the decision-maker has a set of solutions 297 

giving rise to alternative commodity options (M) dependent on the state outcome—see Table 1 298 

for details. This can be represented (Equation 4) by a “continuous input correspondence, 299 

𝑿: 𝕽+
𝑺 → 𝕽+

𝑵, which maps state-contingent inputs into output sets that are capable of producing 300 

that state-contingent output vector” (Chambers & Quiggin, 2002, pg. 514): 301 

𝑿(𝐳) = {𝒙 ∈  𝕽+
𝑵: 𝐱 𝐜𝐚𝐧 𝐩𝐫𝐨𝐝𝐮𝐜𝐞 𝐳} . (4) 302 

The basic form of the state contingent approach to model production risk and incomplete 303 

information is: 304 

𝐲𝐒 = 𝒇(𝐱𝒔)  𝐬 ∈ 𝛀 =  {𝟏, … , 𝐒} (5) 305 

where output (𝑦) is described from a specific crop (𝑥) produced within a single state of nature 306 

(𝑠). Rasmussen (2006) argues that outcomes (i.e., yields and prices) arise from states of nature, 307 

implying the use of stochastic functions. Chavas (2008) used this concept to illustrate the output 308 

from a decision when inputs had to be allocated before the state was fully realized, in line with 309 

traditional robustness tests outlined above. By highlighting the reliability of state conditions or 310 

what we expect within a state (e.g., quantity of rainfall in a drought) we can illustrate production 311 

heterogeneity within the model (i.e., variable yields in a given state of nature), the amount of 312 

input required by state (i.e., water requirements for a state commodity choice) and importantly 313 

 
2 Note Hirshleifer (1965) uses the term ‘state-preference’ rather than Arrow’s (1953) states of nature. 
3 Refers to three input types: i) non-state-specific (or state-general) inputs that must be allocated ex-ante to the 𝑠 

being realized, and which influence 𝑧 in all 𝑠; ii) state-specific inputs that are applied ex-post to the realisation of 

𝑠, and which influence 𝑧 in only that 𝑠; and iii) state allocable (flexible) inputs that are applied ex-ante to 𝑠 being 

realized, but where benefits accrue once 𝑠 is realized. 



the solution response to extant conditions (i.e., variation with a state decreases through time via 314 

learning). Now climate change can also be represented by altering the states’ variance. This can 315 

be written as: 316 

𝐲𝐒 = 𝒇(𝒙𝒔 , 𝜺𝒔) 𝐬 ∈ 𝛀 =  {𝟏, … , 𝐒}. (6) 317 

This sets climate variability and resource reallocation by placing boundaries on 318 

incomplete information about future states, and illustrating a decision-makers’ capacity to learn 319 

and apply appropriate contingency measures. When the re-introduction of stochastic errors are 320 

applied independently to either the state of nature, the state specific inputs requirements, or the 321 

state described outputs, then the environmental signal and the response to that signal can be 322 

separated. This separation minimizes multiplicative and additive uncertainty found in 323 

approaches with multiple stochastic functions. Applications of this approach can either follow 324 

Chavas’ (2008) two stage decision model (i.e., fixed inputs allocated before the state was 325 

revealed) or mimic capacity to reallocate resources once the state is revealed and learning or 326 

innovation occurs. The concept of a two-stage decision is analogous to describing the error term 327 

from Equation 6 to simulate the solution using a Monte-Carlo simulation (Liddle & Monahan, 328 

1988). For our paper this is referred to as the simulated or ex-ante (i.e., before the state is 329 

revealed) solution. The second approach occurs when decision-makers can reallocate resources 330 

after the state reveals itself. This is analogous to having perfect awareness and is modelled 331 

through Monte-Carlo optimisation using Equation 6 where new data is drawn from the 332 

deterministic distribution. In this paper, we label this the ex-post (complete information) 333 

solution. A triangular distribution has been used to set hard bounds (Equation 7). As the distance 334 

between bounds increases the fuzziness proportionally increases: 335 

𝑦𝑠 = {

2(𝑦𝑠−𝑎𝑠)

(𝑐𝑠−𝑎𝑠)(𝑏𝑠−𝑎𝑠)
 if 𝑎𝑠 ≤ 𝑦𝑠 ≤ 𝑐𝑠

2(𝑏𝑠−𝑦𝑠)

(𝑏𝑠−𝑐𝑠)(𝑏𝑠−𝑎𝑠)
 if 𝑐𝑠 ≤ 𝑦𝑠 ≤ 𝑏𝑠

 (7) 336 

Note that in our study the state of nature is a special case in this formula. River flow can only 337 

be 𝑎𝑠 ≥ 0 but the minimum and maximum water supply is confined by other state of nature 338 

mean flows and must not exceed 𝑐 of the proceeding and subsequent states of nature. For 339 

example, if state 1 = dry, state 2 = normal, and state 3 = wet then 𝑐1 ≤ 𝑏2 ≤  𝑐2 . This prevents 340 

obscuring the signal. 341 

In our SCA models, a complete set of states explicitly internalizes plausible futures and 342 

allows for deterministic approaches using complete information to be estimated for a 10-year 343 

investment horizon. This specification means that individual decision-makers have perfect 344 

awareness about all future states of nature (i.e., a dry state is always identical through time), 345 

any commodity always requires the same volume of irrigation water (and other inputs) in each 346 

state of nature, and outputs through time are constant within each state. This equation can be 347 

expanded to mimic the stochastic EV model specification above, where the probability of state 348 

occurrence 𝜋, production systems, state commodity selections, yields, market prices and costs 349 

are all state specific (Equation 8): 350 

𝜠[𝒀] = ∑ ∑ 𝝅𝑺𝑺𝜹 [𝑨𝜹 × 𝑸𝑺
𝜹 ×  (𝑷 − 𝑪)𝑺

𝜹] (8) 351 

This version of the model is aligned to a perfect knowledge outcome, where all probabilities 352 

are known in advance. Chambers and Quiggin (2000) argue that representing perfect foresight 353 

problems within a state contingent approach allows for solutions to be generated using standard 354 

optimisation techniques applied to problems not involving incomplete information. For 355 

example, using a perfect foresight model, Adamson et al. (2009) illustrated how SCA can 356 

encapsulate economic, environmental and social objectives while predicting how irrigators 357 



respond to climatic variability and change. By explicitly representing water variability by state 358 

(i.e., dry, normal and wet), and decision responses to that state (change in inputs or production 359 

system), they determined that changes in the frequency of dry states was a greater factor in 360 

decision-maker allocation of capital than the reduction in water supply by state outcome. 361 

However, they concluded that when optimising with complete deterministic awareness while 362 

the theoretical optimum may be obtained the solution will be inflexible, as any natural 363 

variability in the description of the state and the inputs required in each state is ignored. Further, 364 

in that case, as the solution was derived from a directed river flow/network model any 365 

incomplete information would violate the optimisation constraints and ultimately result not 366 

only in misallocated resources but in solutions that could compound negative externalities. 367 

To counter these outcomes, an uncoupled determination and incorporation of probability 368 

outcomes in the model may be achieved via a stochastic SCA version. To model an agricultural 369 

production problem under incomplete information the model must incorporate a stochastic 370 

representation of either the state of nature (e.g., dry) and/or those inputs required by each state 371 

of nature (e.g., additional water resources). Examining each commodity option separately 372 

prevents the environmental signal and the response to that signal from being misinterpreted. 373 

Importantly, relaxation of the deterministic values permits decision-makers to innovate/learn in 374 

response to new signals within defined bounds. Further, a stochastic representation of outputs 375 

by state of nature is not needed as the ultimate constraint is the total future volume of water to 376 

share between all users. State described output is a function of the state and the inputs available 377 

as below: 378 

𝜠[𝒀𝜺] = ∑ ∑ 𝝅𝑺𝑺𝜹 [𝑨𝜹 × 𝑸𝑺
𝜹 × (𝑷 − 𝑪)𝑺

𝜹]. (9) 379 

As 𝜋𝑠 is the probability of the state occurring, ∑ 𝜋𝑠 = 1 (i.e., every state is identified), where 380 

0 <  𝜋 ≤ 1 (i.e., the states must have a chance of occurring). Here the frequency of state 381 

occurrence π 1 to 3 = (0.2, 0.5, 0.3). Within those frequencies, the volume of water that is 382 

available, based on expected long term average inflows derived from MDBC (2006) is dry (0.6 383 

x Normal Inflows), and wet (1.2 x Normal Inflows). Decision-makers are expected to respond 384 

to these state outcomes by reallocating output. By altering the volume available in normal states 385 

we can then explore the impact of climate change (see below). 386 

3.4 Additional model specification requirements 387 

Returning to our MDB case study, climate change compounds externalities associated with 388 

over-allocated and ill-defined water property rights (Young & McColl, 2009). These negative 389 

externalities include loss of natural capital (Kingsford, 2000), high salinity (Keating et al., 2002; 390 

Yaron & Bresler, 1970), urban water quality reduction (Adamson, Schrobback, & Quiggin, 391 

2008) and the inability of the irrigation network to deliver water to all users when required 392 

(Robertson & Wang, 2004). Consequently, to deal with inequitable resource reallocations, 393 

future shares of water in the MDB are constrained by environmental and social objectives to 394 

internalize these externalities (Commonwealth of Australia, 2008). We account for these issues 395 

with extensions to the model specification, as below. The model aims to maximize economic 396 

return (Equations 2, 3, 8 and 9) from using water for irrigation in a spatially explicit 397 

representation of regional comparative advantage in production by state of nature (S = dry, 398 

normal and wet). Commodity options 𝛿 equal 16 in the EV models and 21 in the SCA models. 399 

This difference is due to the SCA model’s capacity to transition in and out of return-generating 400 

activity 𝑌 by state of nature. The river system is modelled as an undeveloped network with 401 

natural inflows and salt loads by state of nature. As water is extracted for irrigation the return 402 

flows transport salt back into the river network, thereby highlighting the opportunity cost of 403 

water use by location. The models are optimized from a national good perspective (i.e., a 404 



benevolent individual controlling all resources to maximize returns across catchments subject 405 

to environmental needs and social requirements for salinity levels in water). This then mimics 406 

the complex interrelated system described at the beginning of the paper. 407 

For each model specification the relevant equations are summarized in Table 2. 408 

Maximized economic return is always subject to maintaining the City of Adelaide’s water 409 

quality at less than 800 electrical conductivity (EC) in each state of nature, in at least 95% of 410 

years. The measurement of salinity in milligrams per litre (σ) is converted into EC by dividing 411 

it by 0.64 (Equations 10-13). The volume of water used in the basin must also always be less 412 

than the Cap4 on average (i.e., as long as the average Cap is not violated you may use up to the 413 

Cap in a given state of nature) as specified in Equations 14-17. In the model extractions 414 

described for the urban and dryland use under the Cap, all catchments apart from Adelaide are 415 

removed from inflow before the model is optimized to ensure that they received their water 416 

allocations. The Cap has been transformed simply into diversions for irrigation purposes. 417 

Equations 18-21 ensure that water use in a catchment must be less than or equal to the flow in 418 

that catchment, while Equations 22-25 state that the area dedicated to horticulture in any 419 

catchment must be less than or equal to the horticultural constraint in that area. Equations 26-420 

29 ensure that the total area dedicated to irrigation in any region must be less than the total area 421 

available in that region. Finally, Equations 30-33 ensure that there is sufficient operator labour 422 

to undertake the irrigation activity mix in a region (r). 423 

The costs for producing one hectare of state-dependent commodity M for each catchment 424 

K in each state S can be written as the sum of capital costs (i.e., capital costs do not change by 425 

state of nature and are modelled as an annual cost), plus operator labour costs LC (i.e., hours 𝐿 426 

is multiplied by a constant price 𝐿𝑃), plus variable costs 𝑉𝐶 (Equation 38). Finally, Equation 427 

39 details the variable production costs which are derived from the sum of casual labour 𝐶𝐿 428 

(i.e., hours multiplied by a constant price), contractor costs 𝐶𝑜𝑛, machinery costs 𝑀𝑎, chemical 429 

costs 𝐶ℎ, plus water use 𝑊 multiplied by water price 𝑊𝑝 and the sum of any other costs 𝑂𝑡. 430 

 Rks =  ∑(CCk + LCks + VCks) 
(38) 

 VCks =  ∑(CLks + Conks + Maks + Chks + (Wks × Wpks) + Otks) 
(39) 

Once again, Equations 30-33 in Table 2 deal with the amount of operator labour 𝐿 431 

required to produce ∑δ in K. Here we ensure that the amount of labour in a region derived 432 

from ABS (2004) data and based on number of farms multiplied by two people by 2,500 433 

hours/person is adequate to meet the needs of the chosen production systems. 434 

3.5 Models and data 435 

The models were developed in Microsoft Excel using the Risk Solver Platform from 436 

Frontline Systems v.12. In line with our earlier definitions of ex-ante and ex-post models the 437 

platform uses a Monte-Carlo approach in two different ways—again, as depicted in Figure 1. 438 

First, for all ex-ante models the solution is optimized once (i.e. production systems are held 439 

constant) and then the robustness of that model is tested 1,000 times by exploring either a 440 

stochastic representation of water input requirements (i.e. ex-ante inputs) or the description of 441 

 
4 The Cap refers the 1997 limit on long term diversions. Here the term Cap is interchangeable with the economic 

consumptive diversion limit (CDL) or environmental sustainable diversion limit (SDL) depending on which 

scenario is run. 



the state of nature (i.e. total water supply, ex-ante state). Under this constraint, simulating water 442 

requirements for the production systems we see change to water quality (e.g., salt levels), water 443 

flows and the hard environmental targets (i.e. flows to the Coorong). We recognize that under 444 

this approach the environment is forced to assume all risk, which is unrealistic, but simplifies 445 

things. As shown in Appendix Table A3, ex-ante water input model runs are depicted in Runs 446 

2, 7, 12, 17 and 22 while ex-ante state are Runs 4, 9, 14, 19 and 24. These runs allow us to see 447 

how either the water requirements or water supply impact on water quality (Equations 10 and 448 

12) and water flow constraints (Equation 18 and 21). 449 

Second, the ex-post models are optimized 1,000 times with a complete description of 450 

either the inputs required by state of nature (i.e. ex-post inputs Runs 3, 8, 13, 18 and 23) or the 451 

state of nature total water supply (i.e. ex-post state Runs 5, 10, 15, 20 and 25). For input 452 

requirements we can then see how production systems are optimized while meeting salinity 453 

constraints (Equation 11 and 13) and flow constraints (Equations 19 and 21). By altering one 454 

variable at a time we minimize multiplicative uncertainty and determine whether it is the 455 

description of the inputs or the states that have the largest impact on reallocating land between 456 

production systems, farm profit, water use, residual flow and water quality outcomes. Logically, 457 

the ex-post with complete information is the theoretically maximum allocation of resources. 458 

This approach follows Adamson et al. (2007). 459 

The optimization algorithm used was the Large Scale SQP Engine to deal with the non-460 

linearity of river flow. Each of the models uses a conjunctive approach to water resources as 461 

described above. Consequently, total water inflows are dependent upon surface supplies, 462 

ground water supplies and inter-basin transfers. The model uses a directed flow network where 463 

the Basin is divided into 21 catchments consisting of the 19 irrigation areas plus the City of 464 

Adelaide and the Coorong (default flow to sea). Production area by catchment 𝐾 is a matrix of 465 

commodity choices dependent of the state outcome (𝐾 ×  𝛿)  ×  S (Table 1). There are 23 466 

production systems consisting of state commodity choices, the City of Adelaide’s water supply, 467 

and a dryland production system. Catchments (e.g., the Condamine as described in Table 3 and 468 

further detailed in Appendix Table A1) are based on disaggregated Catchment Management 469 

Regions to help model the directed flow network (water and salt). Water flows (fks) out of a 470 

given catchment are equal to inflows (net of evaporation and seepage) less extractions (net of 471 

return flows). Extractions are determined endogenously by land use decisions as described 472 

below, subject to limits imposed by the availability of both surface and groundwater (Equations 473 

34-37, Table 2). This structure allows for the determination of total irrigation use, flow to the 474 

Coorong, and water quality arriving at the City of Adelaide. 475 

The second critical factor in describing 𝐴  is the matrix 𝛿  where the state contingent 476 

production systems are defined. Each state of nature outcome drives an independent commodity 477 

representation of yields 𝑄, prices 𝑃, costs of production 𝐶 and input requirements 𝑁 such that 478 

each matrix has a form of (21 x 23). This data is based on a series of regional gross margin 479 

budgets that provide the data for the five inputs modelled (N = water, land, labour, capital and 480 

cash input). The agricultural systems are derived from (K ×  M) ×  S, where in this case 𝑀 481 

represents commodities. A commodity is a single enterprise under a given state in a given 482 

catchment. This version of the model has 15 distinct commodities (M) plus urban water for the 483 

City of Adelaide and water for the Coorong. Consequently, there are (M+2) x S distinct state-484 

contingent commodities. Yield 𝑄  has a dimension of (K ×  M)  × S which represents the 485 

output derived for that state of nature. Net return per hectare is described in the model as (P-C). 486 

Price 𝑃 paid for output has a matrix of (M ×  S). For simplicity it has been assumed that the 487 

price paid in all regions for each commodity is uniform by state of nature.  488 



Because the model is solved on an annual basis, the process of capital investment is 489 

modelled as an annuity representing the amortized value of the capital costs over the 10-year 490 

lifespan of the development activity. This allows us to model a range of pricing rules for capital, 491 

and to represent the imposition of appropriate constraints on adjustment to derive both short-492 

run and long-run solutions. The state contingent approach also allows for discontinuous 493 

environmental and production functions to be classified as alternatives within each state of 494 

nature. This specification of environmental, urban or private requirement by state of nature 495 

helps determine the type and number of water property rights needed to meet that demand. For 496 

all scenarios examined in this paper, Equations 34-37 apply only to those scenarios that specify 497 

a minimum flow of 1,000 GL reaching the Coorong. Alternative studies could incorporate 498 

environmental targets along the river system to stipulate river flow constraints along the system 499 

as either flow targets by each state of nature (i.e., dry, normal or wet) or on average over the 500 

states of nature. Finally, climate change is represented in our models as the difference between 501 

i) current state conditions (experienced) and ii) two alternative climate scenarios (plausible) 502 

where average atmospheric carbon levels reach 550 parts per million (ppm) under constant state 503 

frequencies (Runs 11-15 and 16-20 in Appendix Table A3) for the EV and SCA models, and a 504 

second  where climate change is represented as an increase in the frequency of dry states under 505 

current climate conditions (Runs 21-25 in Appendix Table A3). .The second scenario is only 506 

run in the SCA model because the EV does not explore tails. This approach builds on Quiggin 507 

et al. (2010), and is incorporated in the ex-ante/ex-post runs. For a complete set of model 508 

outputs please refer to the Appendix materials Tables A3 to A5 online. 509 

4 Results 510 

Recall that our first research question queried if it is possible to represent incomplete 511 

information problems via stochastic bounds across the model types. In simple terms this is 512 

possible, and our results suggest that deterministic (complete information) EV models align 513 

well to stochastic (plausible future) SCA model specifications. This can be illustrated via a 514 

consideration of how land and water resources are reallocated across the MDB in response to 515 

different event outcomes (Table 4). EV modelled economic returns during dry and wet events, 516 

even when modelled by input or state, are non-existent. By contrast, the deterministic, input 517 

and state SCA models return more nuanced results across all states for both current and future 518 

climate conditions. Note though that both salinity and Coorong flow results are differentiated 519 

between the deterministic and input/state EV models, where wet and dry condition outcomes 520 

drive some reallocation above zero values. This suggests that the ex-post inputs model, and 521 

both the ex-ante and ex-post state EV models, have some capacity to respond to stochastic 522 

events with respect to those model constraints—but not others. Thus, the deterministic EV 523 

models appear to ignore (not represent) environmental signals. 524 

Note also the water use results in Table 4. In both current and future climate conditions 525 

water use in dry and wet conditions falls to zero across the full set of EV models, with only the 526 

mean (normal) values being reported. While all models have the same bounds, the capacity of 527 

the SCA models to capture and report differences in the frequency of state events allows for 528 

kinks in the available water supply in gigalitres (Figure 2). Akin to thinking by Guttman et al. 529 

(2006), differences between rational experience, informed decision-making and discontinuities 530 

arising from innovation or learning may appear as kinks. Their work finds no evidence of 531 

smoothing in financial markets; why then would we expect to find it in complex natural 532 

systems? In our models, changes in event frequency (e.g., more drought) causes decision kinks 533 

to move inversely. In the EV models these might be interpreted as noise, rather than adaptation 534 

decisions in response to altered state outcomes, and be ignored as such. 535 



Production reallocation decision results are also interesting across the commodity model 536 

runs, especially for horticulture crops between the EV and SCA models (Table 5). Note what 537 

happens in the area by state of nature. Under increasing climate change, the EV model is unable 538 

to respond to the extreme tails in the distribution, sticking instead to mean values. This shrinks 539 

the total area dedicated to irrigation and fundamentally alters the institutional characteristics of 540 

the system. By contrast, the SCA model reallocates land under production during good seasons 541 

to offset lower returns in the drought (e.g., wheat/cotton). In this situation we see the SCA 542 

model reallocates water away from those commodities that always use water towards those that 543 

stop irrigating in dry years (e.g. Flex cotton and Flex Rice)—and as opposed to those that crop 544 

every year in a fixed pattern. Opportunistic irrigation will only occur in wet years (Dryland 545 

Cotton and Dryland Wheat)5, when the frequency of dry states increases. See the Appendix for 546 

further elaboration on this complex process which represents decision-maker adaptation to the 547 

plausible future signals provided, and model capacity to represent innovation/learning over 548 

adherence to familiar decision pathways based on experience (i.e., routines). 549 

The requirement for models to take state of nature tails into consideration—and prompt 550 

innovation or learning (note the change in area between SCA State, ex-ante and SCA State ex-551 

post between Rice Flex and Wheat Dryland)—is also borne out in predicted water flows by 552 

state which enables us to look more closely at the importance of variability. Under the 553 

deterministic EV and SCA models demand will quickly outstrip supply in dry states, 554 

threatening river system shutdown. But, equally, the models will fail to report decision-makers’ 555 

willingness to use abundant water resources during wet periods. Model solutions that fail to 556 

account properly, or at all, for system bounds and the full extent of outcome variance ultimately 557 

fail. Figure 3 puts this into perspective across the model runs. The EV model data range for 558 

both deterministic and stochastic representations of inputs falls within the estimated bounds of 559 

the deterministic SCA model. This suggests that the EV model cannot progress past the range 560 

of the deterministic (deterministic or historic data-coupled) SCA, is constrained by the tails, 561 

and suggests decision-makers cannot learn to adapt or innovate to change. This is unrealistic as 562 

we have discussed above. Further, differences between the ex-ante (plausible) and ex-post 563 

(complete information) models also illustrate the positive benefits of innovation/learning by 564 

decision-makers. 565 

As both Quiggin (2019) and Pindyck (2011) have noted, tails in the distribution have 566 

serious implications for understanding climate change, and rare events often have far greater 567 

consequence than we give them credit for. Thus, any approach that cannot represent both the 568 

possible impact and solution consequences to rare events may lead to a serious underinvestment 569 

in flexible or adaptive responses leading to long term economic, environmental or social losses. 570 

Considering the time required to optimize between a deterministic model and a stochastic model 571 

and the outcomes from the model, a deterministic SCA model provides significant insights for 572 

minimal time. 573 

These findings provide insights for our second research question about why models of 574 

decision-making must be capable of representing innovation or learning in response to future 575 

uncertain events (e.g., climate change). Logically, as inputs change and the comparative 576 

advantage of commodity choices alter, decisions should alter as well. For example, as complete 577 

information about the future significance of dry states increase (ex-ante) the need to transition 578 

away from perennial commodities that require water in all states (i.e., horticulture) will increase. 579 

As Adamson and Loch (2021) show, insufficient water for horticulture crops across all state 580 

outcomes may result in irreversible capital losses (i.e., root stock loss). Models that do not take 581 

 
5 Remember Table 3 where water use by SCA production system is produced. Rice is not grown in the Condamine 

so appears as 0 ML/Ha in all states. 



irreversible outcomes into account are invalid in agricultural (and other) decision contexts 582 

comprising horticulture and may skew the interpretation or full set of public/private decision 583 

options. As plausible future events impose input shocks this will require public/private goals, 584 

institutions or behaviour decision sets to innovate and adapt in order to achieve long-run 585 

resilience; and models of robustness tests must appropriately capture and reflect such learning 586 

and innovation. 587 

Figure 4 illustrates this requirement using Coorong flow results as a test of model 588 

robustness. The deterministic SCA model provides a stable flow of water that is consistent with 589 

policy and system constraints (i.e., realistic). The three EV model runs transfer an increasing 590 

volume of water to Coorong flows as water is transitioned away from production under mean 591 

(normal condition) use assumptions that, in reality, are unsustainable. Importantly, in Figure 4 592 

we see that even with three EV models we cannot represent a change in the frequency of 593 

alternative states of nature (or bad events occurring) as the current climate and frequency runs 594 

are close to identical. In other words, again it appears as noise in the outcomes. Thus, even the 595 

deterministic SCA model provides greater capacity to deal with changes to incomplete 596 

information over time. 597 

This finding is contrary to that of Adamson et al. (2009) where the frequency of bad states 598 

had greater impacts on reallocating investments than a proportional mean reduction in average 599 

inflows. In those earlier models, production area decreased but the investment decisions 600 

remained constant. Thus, the EV model is incapable of seeing the difference in state frequencies 601 

and generates the same results for current and future climate; even once the climate has altered 602 

(i.e., EV state, ex-post frequency). If the model is representing a mean-reduction in water 603 

availability (i.e., the 550 ex-post run), then a difference in the EV results will appear. This is a 604 

problem for drought policy. If we model future climate adaptation as an increase in the 605 

frequency of bad events, an EV model will not represent change. This also links back to our 606 

Figure 1 representations of the model differences and supports the expected model outcomes. 607 

Finally, we compared all model representations of drought water flows to the Coorong 608 

Wetlands, as shown in Figure 5. It is clear that the deterministic EV and ex-ante EV results lead 609 

to situations where no flow to the Coorong occurs, as those models fail to understand the risk 610 

to the conjunctive resource base. In essence the EV model then places bounds around the 611 

analysis and would create a completely unknown/unexpected outcome. Any failure to consider 612 

water demand upstream could lead to the collapse of the Coorong; a key management flow 613 

target with irreversible loss implications. In reality, basin managers might allocate less water to 614 

irrigation which could in turn lead to a solution choice creating irreversible private capital losses. 615 

By acknowledging that alternative states of nature exist, the SCA model constraints are 616 

achieved in the deterministic and the ex-post input evaluation. The deterministic model (i.e., 617 

SCA, Inputs ex-ante results) would be expected to fail in 50% of years and not 5% of years; 618 

violating a key salinity performance objective for the river system. This suggests that 619 

production/commodity system choices must transition away from always requiring water in 620 

each state of nature (i.e., reduction in perennial crops), as detailed by Loch, Adamson, and 621 

Auricht (2020). Critically, the difference between the deterministic and ex-post SCA model 622 

occurs as the ex-post model actively reallocates resources towards opportunistically irrigating 623 

with substantial shifts towards “dryland cotton” and “dryland wheat” as illustrated in Table 2. 624 

5 Concluding Comments 625 

We have shown that climate change problems are well characterized as incomplete 626 

information events with some ambiguity in the set of performance objectives and the full set of 627 



appropriate solutions in response. Our comparison suggests that SCA modelling of land and 628 

water reallocation more robustly represents and evaluates public policy and private investment 629 

decisions than deterministic/stochastic EV models which is the more commonly adopted 630 

approach for economic and robust metrics modelling of incomplete information with respect to 631 

plausible futures. This is based on our findings that applications of state contingent analysis 632 

using deterministic data allows for an improved representation and understanding of plausible 633 

future events (i.e., adverse and positive states of nature) together with model recognition that—634 

once incomplete information is addressed—decision-makers innovate/learn consistent with 635 

Marshallian views. Stochastic SCA models also facilitate assessment of policy or investment 636 

goals so that they can be tested for fragility, unrealistic conclusions, and/or irreversible loss 637 

outcomes. 638 

Applications of the stochastic SCA model description and its bounds allows for an 639 

exploration of the level of risk associated with state-described input use, thus overcoming issues 640 

associated with thin- or fat-tailed event distributions and non-linear climate change events 641 

(Rosser, 2011). This is not possible using EV model approaches. By comparing ex-ante and ex-642 

post results we are able to identify the value of being prepared for future adverse events, and 643 

selecting adaptation/investment choices in response to preserve capital (i.e., natural, economic, 644 

social, cultural etc.) Further, deterministic SCA models provide better outcomes than stochastic 645 

EV models due to the above-stated capacity to represent solution responses to thin- or fat-tailed 646 

outcomes. This conclusion is supported by the SCA model’s capacity to clearly separate the 647 

signal from the individual’s decision response, and thus inform how distribution tails contribute 648 

to reallocation choices. This separation helps identify the importance of tail events and helps 649 

identify where existing knowledge, technology and known management responses fail—even 650 

where plausible future scenarios do not reflect states of nature previously experienced. We 651 

could further apply such analysis and undertake sensitivity testing to determine when systems 652 

may fail and/or enter the active set of possibilities, and this would provide lessons for on-going 653 

management adaptation at both private and public levels. Future research paths and questions 654 

will be informed by an increased awareness of the full set of contingencies that may/may not 655 

be applicable under future climate change. Such research will enhance future innovation and 656 

adaptation and tests of robustness in the literature given the call to explore complex inter-657 

relationships in human-water systems. However, in practice, the success of those choices will 658 

still be constrained by decision-maker bounds to awareness, and any truly Knightian uncertain 659 

events that may arise. 660 

 661 

  662 
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 843 

Figure 1a: Deterministic EV state outcome representation. 844 

 845 

Figure 1b: Deterministic EV state outcome representation with error terms. 846 

 847 



Figure 1c: SCA deterministic state-described outcomes (D = dry, N = normal, W = wet) within 848 

the stochastic frontier. 849 
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Figure 2: Charts of water use derived from the alternative modelling approaches 859 
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Figure 3: Water use (GL) results 862 
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Figure 4: Coorong flow results under dry conditions by EV/SCA model (ex-post) 865 
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 867 

Figure 5: Comparison of EV and SCA results on environmental dry flows to Coorong 868 
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Table 1: Production System by EV and SCA models 870 

Production 

System (𝜹) 

State Contingent Approach: Commodity (M) EV Approach 

Dry Normal Wet 

Citrus-H Citrus-H Citrus-H Citrus-H Citrus-H 

Citrus-L Citrus-L Citrus-L Citrus-L Citrus-L 

Grapes Grapes Grapes Grapes Grapes 

Stone Fruit-H Stone Fruit-H Stone Fruit-H Stone Fruit-H Stone Fruit-H 

Stone Fruit-L Stone Fruit-L Stone Fruit-L Stone Fruit-L Stone Fruit-L 

Pome Fruit Pome Fruit Pome Fruit Pome Fruit Pome Fruit 

Vegetables Melons Vegetables Fresh Tomatoes Vegetables 

Cotton Flex Dryland Cotton Cotton Flex Cotton  

Cotton Fixed Cotton Fixed Cotton Fixed Cotton Fixed Cotton Fixed 

Cotton/Chickpea Chickpea Cotton Flex Cotton  

Cotton Wet Dryland Cotton Dryland Cotton Cotton  

Rice PSN Rice PSD Rice PSN Rice PSW Rice PSN 

Rice Flex Dryland Wheat Rice PSN Rice PSW  

Rice Wet Dryland Wheat Dryland Wheat Rice PSW  

Wheat Wheat Wheat Wheat Wheat 

Wheat Legume Wheat Legume 

PSD 

Wheat Legume 

PSN 

Wheat Legume 

PSW 

Wheat Legume 

Sorghum Sorghum Sorghum Sorghum Sorghum 

Oilseeds Oilseeds Oilseeds Oilseeds Oilseeds 

Sheep Wheat Sheep Wheat 

PSD 

Sheep Wheat 

PSN 

Sheep Wheat PSW Sheep Wheat 

Dairy-H Dairy-H Dairy-H Dairy-H Dairy-H 

Dairy-L Dairy-L Dairy-L Dairy-L Dairy-L 

Notes: The EV model has less production systems available as the ability to alter production 

systems by state of nature is not considered. 

H = intensive irrigation capital (i.e., drip lines) 

L = low irrigation capital (i.e., furrows)  

Flex = production systems that may alter from year to year 

Fixed = production system that are employed every year 

PSD = production system, dry conditions 

PSN = production system, normal conditions 

PSW = production system, wet conditions 
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Table 2: Summary of the full model specification, by approach and deterministic/stochastic setting 872 

EV Eq. EV, Stochastic Eq. SCA Eq. SCA, Stochastic Eq. 

Ε[Y] = ∑[Aδ × Qδ ×  (P − C)δ ]

δ

 (2) Ε[Y𝜀]

= ∑ [𝑨𝜺
𝜹  × 𝑸𝜺

𝜹
 

δ

×  (𝑷𝜹
− 𝑪𝜺

𝜹
) ] 

(3) Ε[Y]

= ∑ ∑ πS

Sδ

[Aδ × QS
δ ×  (PS

δ − CS
δ) ] 

(8) Ε[Y𝜀]

= ∑ ∑ πS

Sδ

[𝑨𝜺
𝜹

 ×  𝑸𝒔𝜺
𝜹

×  (𝑷𝒔
𝜹

− 𝑪𝒔𝜺
𝜹

) ] 

(9) 

        

Subject to:        

        

σ20 0.64⁄  ≤ 800 EC (10) VaR0.95 (σ20 0.64⁄

≤  800 EC) 

(11) σs
20 0.64⁄  ≤ 800 EC (12) VaR0.95 (σs

20 0.64⁄ ≤  800 EC) (10) 

∑ K ≤ CAP 
(14) ∑ K ≤ CAP 

(15) ∑ Ksπs ≤ CAP 
(16) ∑ Ksπs ≤ CAP 

(11) 

wk ≤  fk (18) Vaδ0.95 (wk𝜀 ≤  fk𝜀) (19) wk𝑆 ≤  fk𝑠 (20) Vaδ0.95 (wk𝑆𝜀 ≤  fk𝑠𝜖) (21) 

Akδ1..5 ≤ AHortk (22) Akδ1..5 ≤ AHortk (23) Akδ1..5 ≤ AHortk (24) Akδ1..5 ≤ AHortk (25) 

Akδ1..16 ≤ Atotalk (26) Akδ1..16 ≤ Atotalk (27) Akδ1..22 ≤ Atotalk (28) Akδ1..22 ≤ Atotalk (29) 

∑ Lrk ≤  Lk (30) ∑ Lrk ≤  Lk (31) ∑ Lrk ≤  Lk (32) ∑ Lrk ≤  Lk (33) 

        

fk21  ≥ 1,000 GL (34) Vaδ0.95 (fk21  ≥ 1,000 GL) (35) fks
21  ≥ 1,000 GL (36) Vaδ0.95 (fksε

21  ≥ 1,000 GL) (37) 

        

 873 



Table 3: Water Use by State of Nature (ML): Condamine catchment example only 874 

Production System State Contingent Water Use  Normal (EV) 

Dry Normal Wet  

Citrus-H (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

Citrus-L (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

Grapes (2.5, 5, 7.5) (2.5, 5.0, 7.5) (3.0, 6.0, 9.0) (2.5, 5, 7.5) 

Stone Fruit-H (1.7, 3.3, 5) (1.7, 3.33, 5.0) (2.0, 4.0, 6.0) (1.7, 3.3, 5.0) 

Stone Fruit-L (3.2, 6.4, 9.7) (3.2, 6.4, 9.7) (3.9, 7.7, 11.6) (3.2, 6.4, 9.7) 

Pome Fruit (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

Vegetables (0, 0, 0) (2.0, 4.0, 6.0) (3.0, 6.0, 9.0) (0, 0, 0) 

Cotton Flex (0, 0, 0) (2.5, 5.0, 7.5) (2.5, 5, 7.5)  

Cotton Fixed (2.5, 5.0, 7.5) (2.5, 5.0, 7.5) (2.5, 5, 7.5) (2.5, 5.0, 7.5) 

Cotton/Chickpea (1.9, 3.8, 5.6) (2.5, 5.0, 7.5) (2.5, 5, 7.5)  

Cotton Wet (0, 0, 0) (0, 0, 0) (3.0, 6.0, 9.0)  

Rice PSN (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

Rice Flex (0, 0, 0) (0, 0, 0) (0, 0, 0)  

Rice Wet (0, 0, 0) (0, 0, 0) (0, 0, 0)  

Wheat (0.8, 1.5, 2.3) (0.8, 1.5, 2.3) (0.9, 1.8, 2.7) (0.8, 1.5, 2.3) 

Wheat Legume (0.8, 1.7, 2.5) (1.3, 2.6, 3.9) (1.6, 3.2, 4.7) (0.8, 1.7, 2.5) 

Sorghum (2.0, 4.0, 6.0) (2.0, 4.0, 6.0) (2.4, 4.8, 7.2) (2.0, 4.0, 6.0) 

Oilseeds (2.0, 4.0, 6.0) (2.0, 4.0, 6.0) (2.0, 4.0, 6.0) (2.0, 4.0, 6.0) 

Sheep Wheat (3.7, 7.4, 11.0) (2.4, 4.8, 7.1) (1.7, 3.5, 5.2) (3.7, 7.4, 11.0) 

Dairy-H (3.2, 6.3, 9.5) (4.5, 9.0, 13.5) (5.4, 10.8, 16.2) (3.2, 6.3, 9.5) 

Dairy-L (3.0, 6.0, 9.0) (5.0, 10.0, 15.0) (6.0, 12, 18) (3.0, 6.0, 9.0) 

 Notes: For both the state-contingent and expected value the deterministic 

data is always the middle number. If all values 0 then the commodity is 

not grown in that region. If the values are 0 in states and >0 in others it 

means that the production system has transitioned from dryland to 

irrigated. If the cell is blank for the EV that production system is not 

possible in the EV model. 

H = intensive irrigation capital (i.e., drip lines) 

L = low irrigation capital (i.e., furrows)  

Flex = production systems that may alter from year to year 

Fixed = production system that are employed every year 

PSN = production system, normal conditions 
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Table 4: Comparison of model runs by current climate, 550 ppm Climate Change  and shifts to increased dry frequency, see Appendix A3 for 877 

details. Results shown for estimated water use (GL), the flow to the terminal node (Coorong), the salinity (Water Quality) at Morgan (the offtake 878 

for Adelaide's potable supplies), and the economic return from land allocation (Table 5). Data for stochastic runs is the 50th Percentile. 879 
 Model Run Water Use (GL) Coorong Flow (GL) Salinity (EC) Economic Return (AU$’m) 

Dry Normal Wet Avg Dry Normal Wet Avg Dry Normal Wet Avg Dry Normal Wet Avg 

C
u

rr
e
n

t 
cl

im
a

te
 

EV, Deterministic 0 9,162 0 9,162 0 6,221 11,753 6,221 0 228 222 228 $0 $2,591 $0 $2,591 

EV, Inputs Ex-ante 0 9,412 0 9,412 0 6,191 11,746 6,191 0 231 223 231 $0 $2,644 $0 $2,644 

EV, Inputs Ex-post 0 7,065 0 7,065 1,256 7,833 13,475 7,833 380 158 166 158 $0 $2,270 $0 $2,270 

EV, State Ex-ante 0 9,368 0 9,368 3,858 760 11,755 760 203 1,045 222 1,045 $0 $2,591 $0 $2,591 

EV, State Ex-post 0 6,792 0 6,792 6,056 2,572 13,606 2,572 94 407 161 407 $0 $2,013 $0 $2,013 

                 

SCA, Deterministic 5,849 8,930 11,757 9,162 1,287 6,383 10,482 6,594 288 235 285 260 $1,085 $2,644 $3,872 $2,701 

SCA, Input Ex-ante 6,092 9,116 11,994 9,374 1,254 6,398 10,461 6,588 295 234 286 262 $1,085 $2,644 $3,871 $2,701 

SCA Input Ex-post 5,517 8,013 10,763 8,339 1,772 7,170 11,323 7,336 214 190 243 211 $1,026 $2,396 $3,590 $2,480 

SCA, State Ex-ante 6,055 9,136 11,963 9,368 5,771 880 10,478 4,738 91 1,061 285 634 $1,085 $2,644 $3,872 $2,701 

SCA, State Ex-post 5,516 6,829 14,146 8,762 6,212 2,465 8,956 5,161 70 409 342 321 $901 $2,084 $3,663 $2,321 

                  

N
ew

 c
li

m
a

te
 R

C
P

 5
5

0
 A

v
g

.*
  EV, Deterministic 0 9,000 0 9,000 0 3,756 8,117 3,756 0 350 311 350 $0 $2,502 $0 $2,502 

EV, Inputs Ex-ante 0 9,228 0 9,228 0 3,740 8,109 3,740 0 350 312 350 $0 $2,348 $0 $2,348 

EV, Inputs Ex-post 0 7,853 0 7,853 0 4,703 9,119 4,703 0 262 253 262 $0 $2,292 $0 $2,292 

EV, State Ex-ante 0 9,206 0 9,206 1,627 0 8,136 0 411 1,305 310 1,305 $0 $2,502 $0 $2,502 

EV, State Ex-post 0 5,311 0 5,311 4,962 2,079 10,980 2,079 133 656 210 656 $0 $1,852 $0 $1,852 

                 

SCA, Deterministic 4,632 9,179 12,154 9,162 1,000 3,630 6,430 3,944 266 374 445 374 $1,075 $2,578 $3,752 $2,629 

SCA, Input Ex-ante 4,842 9,392 12,369 9,375 997 3,625 6,424 3,939 268 375 445 374 $959 $2,348 $3,447 $2,400 

SCA Input Ex-post 4,396 8,636 10,752 8,422 1,398 4,155 7,556 4,624 183 315 347 298 $884 $2,116 $3,242 $2,208 

SCA, State Ex-ante 4,838 9,385 12,360 9,368 4,583 0 6,449 2,851 86 0 444 150 $1,075 $2,578 $3,752 $2,629 

SCA, State Ex-post 3,687 5,293 15,032 7,894 5,641 2,097 4,570 3,548 51 440 664 429 $869 $1,853 $3,472 $2,142 

                  

F
re

q
u

en
cy

 SCA, Deterministic 3,492 10,535 14,234 9,162 3,409 5,260 8,748 5,402 87 297 367 248 $1,279 $2,809 $3,786 $2,546 

SCA, Input Ex-ante 3,682 10,752 14,447 9,370 3,423 5,253 8,743 5,402 86 296 367 247 $1,192 $2,546 $3,431 $2,317 

SCA Input Ex-post 3,194 9,599 12,919 8,342 3,863 6,059 9,813 6,151 62 247 308 204 $1,048 $2,355 $3,281 $2,148 

SCA, State Ex-ante 3,698 10,741 14,440 9,368 7,866 0 8,745 4,109 42 1,538 368 855 $1,279 $2,809 $3,786 $2,546 

SCA, State Ex-post 4,640 7,074 17,575 8,444 7,079 2,396 6,558 4,634 55 436 528 340 $1,009 $2,126 $3,694 $2,104 

Notes: Avg = Average. Shaded areas show what occurs when EV allocations (i.e. average flows) are utilized as a basis for the SCA model to explore wat would occur if ‘other’ states 

eventuated. This highlights surplus flows that would be available and reallocated by the SCA model, and the adaptation that takes place. Average in the EV are therefore the ‘Normal 

Values’ to make the table easier to read. 

Ex-ante is the plausible future solution. Ex-post is the complete information solution. Input is the quantity of water inputs required. State is the description of water supply. 

0 salinity = as there was no water flowing there was no salinity. For 0 values for water use and economic return, the EV models do not generate these values 

* The RCP 550 Average scenario denotes a 550 parts-per-million CO2 representative concentration pathway, or a relatively high level of future climate change impact.  
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Table 5: Production system by state commodity (‘000 hectares) 880 

 

 

Citru

s-H 

Citrus

-L 

Grape

s 

Stone 

Fruit-

L 

Pome 

Fruit 

Veg Cotton 

Flex 

Cotton 

Fixed 

Cotton 

Wet 

Rice 

PSN 

Rice 

Flex 

Rice Wet Wheat Dairy

-H 

Dairy

-L 

C
u

rr
e
n

t 
cl

im
a

te
 

EV, Deterministic 9 127 14 4 7 57 0 390 0 403 0 0 229 0 195 

EV, Inputs Ex-ante 9 127 14 4 7 57 0 390 0 403 0 0 229 0 195 

EV, Inputs Ex-post 9 127 14 4 7 57 0 253 0 240 0 0 301 0 144 

EV, State Ex-ante 9 127 14 4 7 57 0 390 0 403 0 0 229 0 195 

EV, State Ex-post 9 127 14 4 7 57 0 132 0 238 0 0 275 0 191 

                

SCA, Deterministic 0 136 72 4 7 0 438 0 243 392 0 0 33 24 186 

SCA, Input Ex-ante 0 136 72 4 7 0 438 0 243 392 0 0 33 24 186 

SCA Input Ex-post 0 136 72 4 7 0 304 41 240 314 39 0 67 24 139 

SCA, State Ex-ante 0 136 72 4 7 0 438 0 243 392 0 0 33 24 186 

SCA, State Ex-post 0 136 72 4 7 0 167 0 378 389 0 435 150 24 57 

                 

C
li

m
a

te
 c

h
a

n
g

e 
5

5
0

 A
v
g

.*
  

EV, Deterministic 9 127 14 4 7 57 0 335 0 456 0 0 280 0 155 

EV, Inputs Ex-ante 9 127 14 4 7 57 0 335 0 456 0 0 280 0 155 

EV, Inputs Ex-post 9 127 14 4 7 57 0 269 0 364 0 0 313 0 115 

EV, State Ex-ante 9 127 14 4 7 57 0 335 0 456 0 0 280 0 155 

EV, State Ex-post 9 127 14 4 7 57 0 104 0 158 0 0 204 0 122 

                

SCA, Deterministic 0 135 72 4 7 0 423 0 244 253 213 0 33 24 147 

SCA, Input Ex-ante 0 135 72 4 7 0 423 0 244 253 213 0 33 24 147 

SCA Input Ex-post 0 136 72 4 7 0 315 0 129 188 271 0 164 24 108 

SCA, State Ex-ante 0 135 72 4 7 0 423 0 244 253 213 0 33 24 147 

SCA, State Ex-post 0 136 72 4 7 0 117 0 309 0 0 755 116 24 234 

                 

F
re

q
u

en
cy

 SCA, Deterministic 0 136 72 4 7 0 443 57 230 0 528 0 122 24 186 

SCA, Input Ex-ante 0 136 72 4 7 0 443 57 230 0 528 0 122 24 186 

SCA Input Ex-post 0 136 72 4 7 0 414 0 205 0 488 0 157 24 141 

SCA, State Ex-ante 0 136 72 4 7 0 443 57 230 0 528 0 122 24 186 

SCA, State Ex-post 0 136 72 4 7 0 124 43 422 29 61 694 154 36 300 

* The 550 Average scenario denotes a 550 parts-per-million CO2 representative conceptration pathway, or a relatively high level of future climate change impact. 881 
882 



 

Appendix Material 

Table A1: Illustrative Water Resource Data for Condamine only (‘000 GL) Current Climate) 

Description  State of Nature  

 Dry Normal Wet 

Deterministic Normal  620  

Stochastic Normal 

Triangular Distribution (a, b, c) 

 (97, 620, 985)  

Deterministic SCA 359 620 802 

Stochastic SCA 

Triangular Distribution (a, b, c) 

(97,358,620) (359,620,803) (620,803,985) 

 

Table A2: Water Resource Data for Condamine only (‘000 GL) Climate Change (550 Avg, 2050) 

Description  State of Nature  

 Dry Normal Wet 

Deterministic   564  

Stochastic  

Triangular Distribution (a, b, c) 

 (88, 564, 896)  

Deterministic SCA 326 564 730 

Stochastic SCA 

Triangular Distribution (a, b, c) 

(88,326,564) (326,564,730) (564,730,896) 

 

There is constant water reduction in each corresponding cell. Full data sets available on request.  
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Table A3: Analysis Summary 

Run Description Climate State of Nature Frequency 

Dry Normal  Wet 

1 EV, Deterministic Current  1.0  

2 EV, Inputs Ex-ante Current  1.0  

3 EV, Inputs Ex-post Current  1.0  

4 EV, State Ex-ante Current  1.0  

5 EV, State Ex-post Current  1.0  

      

6 SCA, Deterministic Current 0.2 0.5 0.3 

7 SCA, Input Ex-ante Current 0.2 0.5 0.3 

8 SCA Input Ex-post Current 0.2 0.5 0.3 

9 SCA, State Ex-ante Current 0.2 0.5 0.3 

10 SCA, State Ex-post Current 0.2 0.5 0.3 

      

11 EV, Deterministic 550 Avg  1.0  

12 EV, Inputs Ex-ante 550 Avg  1.0  

13 EV, Inputs Ex-post 550 Avg  1.0  

14 EV, State Ex-ante 550 Avg  1.0  

15 EV, State Ex-post 550 Avg  1.0  

      

16 SCA, Deterministic 550 Avg 0.2 0.5 0.3 

17 SCA, Input Ex-ante 550 Avg 0.2 0.5 0.3 

18 SCA Input Ex-post 550 Avg 0.2 0.5 0.3 

19 SCA, State Ex-ante 550 Avg 0.2 0.5 0.3 

20 SCA, State Ex-post 550 Avg 0.2 0.5 0.3 

      

21 SCA, Deterministic Current 0.3 0.5 0.2 

22 SCA, Input Ex-ante Current 0.3 0.5 0.2 

23 SCA Input Ex-post Current 0.3 0.5 0.2 

24 SCA, State Ex-ante Current 0.3 0.5 0.2 

25 SCA, State Ex-post Current 0.3 0.5 0.2 

EV= expected value 

SCA = State contingent analysis 

Current climate = historical values 

550 Avg = forecasted climate in 2050 under 550 ppm of carbon  

State of Nature = examines the implication of how a state of nature is described 

Inputs by state = describes the volume of water required to produce a state specific 

commodity  
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Table A4 Area Irrigated By State of Nature 
 Description State of Nature 

  Dry Normal Wet 

C
u

rr
en

t 
cl

im
a

te
 

EV, Deterministic  1,435  

EV, Inputs Ex-ante  1,435  

EV, Inputs Ex-post  1,156  

EV, State Ex-ante  1,435  

EV, State Ex-post  1,053  

    

SCA, Deterministic 853 1,290 1,533 

SCA, Input Ex-ante 853 1,290 1,533 

SCA Input Ex-post 802 1,145 1,385 

SCA, State Ex-ante 853 1,290 1,533 

SCA, State Ex-post 838 1,005 1,818 

     

C
li

m
a
te

 c
h

a
n

g
e 

5
5
0
 A

v
g
. 

 

EV, Deterministic  1,444  

EV, Inputs Ex-ante  1,444  

EV, Inputs Ex-post  1,279  

EV, State Ex-ante  1,444  

EV, State Ex-post  805  

    

SCA, Deterministic 673 1,309 1,553 

SCA, Input Ex-ante 673 1,309 1,553 

SCA Input Ex-post 702 1,288 1,417 

SCA, State Ex-ante 673 1,309 1,553 

SCA, State Ex-post 591 708 1,772 

     

F
re

q
u

en
cy

 SCA, Deterministic 607 1,577 1,808 

SCA, Input Ex-ante 607 1,577 1,808 

SCA Input Ex-post 539 1,440 1,645 

SCA, State Ex-ante 607 1,577 1,808 

SCA, State Ex-post 780 965 2,081 
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Table A5 Compare Deterministic v Stochastic & Climate Change (Ex-post) 

 Description  State of Nature 

  Model Dry Normal Wet 

D
et

er
m

in
is

ti
c
 

Current Climate EV 0 1,435 0 

Current Climate SCA 853 1,290 1,533 

New climate RCP 

550 Avg EV 0 1,444 0 

New climate RCP 

550 Avg SCA 673 1,309 1,553 

Frequency SCA 607 1,577 1,808 

      

In
p

u
ts

 

Current Climate EV 0 1,156 0 

Current Climate SCA 802 1,145 1,385 

New climate RCP 

550 Avg EV 0 1,279 0 

New climate RCP 

550 Avg SCA 702 1,288 1,417 

Frequency SCA 539 1,440 1,645 

      

S
ta

te
 

Current Climate EV 0 1,053 0 

Current Climate SCA 838 1,005 1,818 

New climate RCP 

550 Avg EV 0 805 0 

New climate RCP 

550 Avg SCA 591 708 1,772 

Frequency SCA 780 965 2,081 
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SCA production systems note to the model 

The state-contingent approach examines how the state of nature (e.g. droughts and floods) influences 

the management strategy to alter the inputs used to produce state specific outputs. For example, shiraz 

grapes produced in periods of low water supply have more smaller berries than grapes produced with 

normal water supply. Smaller berries then increase the grape skin to moisture ratio and can produce 

a higher quality wine.  

 

The transformation of commodities into SCA production systems allows for irrigation management 

practices to be reflected both within and between states of nature. As similar state of natures, with 

identical outcomes, can be combined to keep the state space small, the model has merged similar 

commodities with similar management strategies into generic production systems (see Citrus below) 

to reduce the model size.  

 

The description of each of the 22 state-contingent production systems 𝑥 is documented below and 

Table  illustrates how the state-contingent production systems alter the inputs used and outputs 

obtained by state of nature. In Table , the multiplier for 𝑍 alters output, the term ‘water’ is a multiple 

for the water used and the heading ‘VC’ either increases or decreases the variable costs per Ha by the 

described dollar value. The Citrus production system is used to illustrate, how the variables 𝑍, ‘water’ 

and ‘VC’ are used to transform the normal states production data to production data for the dry and 

wet state of nature. 

 

The Horticultural State-Contingent Production Systems: 

 

Citrus 

The citrus production system is designed to reflect strategies used by grapefruit, lemon, lime, 

mandarin and orange producers to deal with changing states of water availability. Producers can 

utilize either –H or –L irrigation technology to produce citrus crops.  

 

When compared to the normal state of nature, a Citrus-H producer operating in a dry state of nature, 

will allocate the same volume of water but receive a 20% reduction in output and face increased 

variable costs of $20/Ha (Table ). When the wet state of nature is experienced, the producer increases 

water consumption by 120%, in part to help flush salt away from the root zone. Yield is expected to 

increase by 20% per Ha in a wet state of nature and this then requires an additional expenditure of 

$20/Ha to manage and harvest the crop (Table ).  

 

The state-contingent production systems reflect this via the reduction in output experienced in the dry 

state of nature. When compared to the normal state of nature, Citrus-L and Citrus-H output declines 

by 10% and 20% respectively when compared to the normal sate of nature.  

 

Grapes  

The grape production system reflects the changes in output (i.e. tons of grapes), water used and 

variable costs experienced by table and wine grape producers as they adapt to alternative states of 

nature. 

 



 

Table A6 Data for the State-Contingent Productions  

𝑋 Production 

System Name 

Dry Multipliers and Costs Normal Wet Multipliers and Costs 

 Commodity 𝒁 Wate

r 

VC Commodity Commodity 𝒁 Wate

r 

VC 

𝑥1 Citrus-H Citrus-H 0.8 1.0 $20 Citrus-H Citrus-H 1.2 1.2 $20 

𝑥2 Citrus-L Citrus-L 0.9 1.0 $0 Citrus-L Citrus-L 1.2 1.2 $100 

𝑥3 Grapes Grapes 0.9 1.0 $20 Grapes Grapes 1.2 1.2 $20 

𝑥4 Stone Fruit-H Stone Fruit-H 0.8 1.0 $20 Stone Fruit-H Stone Fruit-H 1.2 1.2 $20 

𝑥5 Stone Fruit-L Stone Fruit-L 0.9 1.0 $0 Stone Fruit-L Stone Fruit-L 1.2 1.2 $100 

𝑥6 Pome Fruit Pome Fruit 0.9 1.0 $20 Pome Fruit Pome Fruit 1.2 1.2 $20 

𝑥7 Vegetables Melons 1.0 1.0 $0 Vegetables Fresh Tomatoes 1.0 1.0 $0 

𝑥8 Cotton Flex Dryland Cotton 1.0 1.0 $0 Cotton Flex Cotton 1.0 1.0 $100 

𝑥9 Cotton Fixed Cotton Fixed 1.0 1.0 $0 Cotton Fixed Cotton Fixed 1.0 1.0 $0 

𝑥10 Cotton/Chickpea Chickpea 1.0 1.0 $0 Cotton Flex Cotton 1.0 1.0 $100 

𝑥11 Cotton Wet Dryland Cotton 0.8 1.0 $0 Dryland Cotton Cotton 0.9 1.2 $100 

𝑥12 Rice PS Rice PSD 1.0 1.0 $0 Rice PSN Rice PSW 1.1 1.1 $0 

𝑥13 Rice Flex Dryland Wheat 1.0 1.0 $0 Rice PSN Rice PSW 1.0 1.2 $100 

𝑥14 Rice Wet Dryland Wheat 1.0 1.0 $0 Dryland Wheat Rice PSW 0.95 1.2 $100 

𝑥15 Wheat Wheat 0.8 1.0 $0 Wheat Wheat 1.1 1.2 $50 

𝑥16 Wheat Legume Wheat Legume PSD 1.0 1.0 $0 Wheat Legume PSN Wheat Legume PSW 1.0 1.0 $0 

𝑥17 Sorghum Sorghum 0.8 1.0 $0 Sorghum Sorghum 1.1 1.2 $100 

𝑥18 Oilseeds Oilseeds 0.8 1.0 $0 Oilseeds Oilseeds 1.1 1.0 $0 

𝑥19 Sheep Wheat Sheep Wheat PSD 1.0 1.0 $50 Sheep Wheat PSN Sheep Wheat PSW 1.0 1.0 $0 

𝑥20 Dairy-H Dairy-H 0.9 0.7 $300 Dairy-H Dairy-H 1.5 1.2 $0 

𝑥21 Dairy-L Dairy-L 0.8 0.6 $300 Dairy-L Dairy-L 1.2 1.2 $0 

𝑥22 Dryland Dryland 1.0 1.0 $0 Dryland Dryland 1.0 1.0 $0 

H= intensive irrigation capital (e.g. drip lines). 

L = low irrigation capital (e.g. furrows). 
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Stone fruit 1 

Stone fruit production systems reflect the management systems used by apricot, cherry, nectarine, peach 2 

and plum producers as they alter their inputs by state of nature. 3 

 4 

Pome Fruit 5 

The pome fruit state-contingent production system detail changes in inputs and outputs by state of nature, 6 

for the apple and pear industry in the MDB. 7 

 8 

Vegetables 9 

The term vegetables is used to describe a range of regional irrigated vegetable production alternatives, 10 

including asparagus, beetroot, broccoli, cabbage, capsicum, carrot, cauliflower, eggplant, garlic, lettuce, 11 

onion, potato, pumpkin, rockmelon, sweet corn, tomato, watermelon and zucchini. 12 

 13 

“In the normal state, the vegetable production activity is represented by an average return from 14 

a range of alternative irrigated vegetable crops. In the dry state, water resources are conserved 15 

by planting only a dryland rockmelon crop. In the wet state, all resources are transferred to 16 

producing tomatoes for the fresh market” (Quiggin et al. 2010, p. 542). 17 

 18 

Broadacre commodities: 19 

 20 

Cotton (Fixed Rotation) or Cotton Fixed 21 

“To assist pest management, and sustain soil fertility, cotton is produced on a rotation system, 22 

represented here as allowing for two years of irrigated cotton production and one year of dryland 23 

agriculture over a three-year cycle. The simplest way of managing such a system is a three-field 24 

rotation, in which one-third of the land area is rotated out of irrigation each year” (Adamson, 25 

Mallawaarachchi & Quiggin 2007, p. 270). 26 

 27 

Cotton (Flexible Rotation) of Cotton Flex 28 

“We also model an alternative rotation system in which the entire land area is allocated to dryland 29 

agriculture in dry years, and to cotton production in wet years. Since this activity requires more 30 

active management it incurs a cost penalty relative to the Fixed Rotation activity which has the 31 

same average yield. However, if producers face variable state-contingent prices for water (or 32 

variable shadow prices associated with constraints), they may choose to adopt this activity” 33 

(Adamson, Mallawaarachchi & Quiggin 2007, p. 270). 34 

 35 

Cotton/Chickpea 36 

The cotton/chickpea state-contingent production system mimics the ‘Cotton Flex’ production option but 37 

instead of allocating resources to a dryland crop in the dry state of nature, inputs are allocated towards 38 

an irrigated chickpea crop. 39 

 40 

Cotton Wet 41 

The ‘cotton wet’ production system is designed to model opportunistic irrigation practices that occur in 42 

the NMDB when supplementary property rights are most secure in the wet state of nature (Section 43 

Error! Reference source not found.). For this production system… 44 

“[t]he producer produces an irrigated cotton crop only in the wet state of nature. In other states 45 

of nature, dryland grain cropping is undertaken.(Quiggin et al. 2010, p. 542). 46 

 47 

Rice PSN 48 

The Rice PSN was designed to illustrate how rice is produced in the Southern Murray-Darling Basin 49 

(SMDB) and is similar in design to the cotton fixed rotation. This production system divides each Ha of 50 

Rice PSN, into 1/3 of the area planted to rice and the remaining 2/3 grows wheat, to reflect industry 51 
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practices. In a normal state of nature, once the rice crop is harvested, farmers take advantage of residual 52 

soil moisture by producing a vegetable crop, and 10% of this production is assumed to be derived from 53 

the Rice PSN. In the dry state (Rice PSD) this vegetable crop cannot be produced and in the wet state of 54 

nature (Rice PSW), 15% of vegetable returns are due to the rice crop. 55 

 56 

Rice Flex  57 

The ‘Rice Flex’ production system was designed to mimic the ‘Cotton Flex’ system for the rice industry 58 

as it allows producers to allocate resources towards producing a dryland wheat crop in the dry state of 59 

nature. 60 

 61 

Rice Wet 62 

The ‘Rice Wet’ provides the opportunity for the rice industry to respond to years when water is plentiful. 63 

Like the ‘Cotton Wet’ system, irrigation only occurs in the wet state of nature and in all other states of 64 

nature a dryland wheat crop is produced. To reflect this opportunistic behavior by non-specialist 65 

producers, a yield penalty of 5% has been applied (Table ). 66 

 67 

Wheat  68 

The wheat system produces an irrigated crop of wheat in every state of nature.  69 

 70 

Wheat/Legume 71 

Rotation cropping practices provide output benefits and greater efficiency of input use; as each crop in 72 

the rotation requires different bundles of inputs, adaption to a state can be inferred if resources are 73 

reallocated. To represent this management option the Wheat/Legumes production system was created 74 

and ‘Legume’ is a default commodity derived from the available legume crops each 𝑘, which includes 75 

adzuki bean, chickpea, fava bean, mungbean, navy bean, peanut and soybean.  76 

 77 

The farmer’s adaption to water availability is represented by altering the percentage of land dedicated 78 

to the wheat and legume crop in each Ha and to reflect the benefits of investing in rotation wheat output 79 

is increased by 10% in each state of nature. Land allocation between wheat and legumes occurs at a rate 80 

of 50/50, 100/0 and 30/70 for the normal, dry and wet state of nature respectively. 81 

 82 

Oil Seeds 83 

The oil seed production system provides the opportunity for irrigators to invest in producing canola 84 

and/or sunflowers, depending on what can be produced in each 𝑘. 85 

 86 

Sheep/Wheat 87 

“This production activity represents a state-contingent production plan where producers allocate 88 

resources between sheep and wheat production in response to climatic conditions and market 89 

forces. The production mix between the two outputs is 50% wheat and 50% sheep in the normal 90 

state, 90% sheep and 10%wheat in the dry state, and 30% sheep and 70%wheat in the wet state. 91 

Effort is placed in keeping the breeding stock alive during the dry state while in wet states there 92 

is plenty of fodder available on the non-irrigated pasture, and irrigated land can be allocated to 93 

wheat production”(Quiggin et al. 2010, p. 542). 94 

 95 

Dairy 96 

During the Millennium drought one adaption strategy employed by dairy producers was the trading of 97 

water to purchase feed. The ‘Dairy’ production system modelled here does not include the capacity to 98 

trade water in the dry state but rather assumes that all water is used on farm to reflect the ability of dairy 99 

producers to respond to water supplies by increasing or decreasing the total area irrigated within a 100 

property and compensating feed deficiencies by purchasing feed. The data used to construct Chart A1 101 

to describe the changing area irrigated is for illustration purposes only.  102 
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A dairy producer has the choice of producing dryland or irrigated pasture on their farm. To represent the 103 

decision maker’s response to the availability of water, the proportion of each Ha that is irrigated alters 104 

by state of nature. Using the data for Dairy- H (Table ), the water multiplier for the dry and wet state of 105 

nature is 0.7 and 1.2, respectively. The impact of this state described water multiplier then means that in 106 

a dry state of nature only 40% of each Ha is irrigated, in the normal state of nature 80% of the Ha is 107 

irrigated and in the wet state of nature the entire Ha is irrigated (Chart A1). To compensate for the lack 108 

of feed in the dry state of nature, an additional $300 is spent per Ha purchasing supplements (Table ) but 109 

despite feeding cattle, output decreases by 10%. But in a wet state of nature, no additional feed is 110 

required and output increases by 50%. 111 

 112 
Chart A1 Proportion of a Hectare Irrigated by State of Nature (%) 113 

 114 
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