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Metabolomics reveals the
response of hydroprimed
maize to mitigate the impact
of soil salinization

Enying Zhang1, Xingjian Zhu1, Wenli Wang1, Yue Sun1,
Xiaomin Tian1, Ziyi Chen1, Xinshang Mou1, Yanli Zhang1,
Yueheng Wei1, Zhixuan Fang1, Neil Ravenscroft1,2,3,
David O’Connor1,2, Xianmin Chang1,2 and Min Yan1*

1College of Agronomy, Qingdao Agricultural University, Qingdao, China, 2School of Agriculture, Food
and Environment, Royal Agricultural University, Cirencester, United Kingdom, 3International
Agriculture University, Tashkent, Uzbekistan
Soil salinization is a major environmental stressor hindering global crop

production. Hydropriming has emerged as a promising approach to reduce

salt stress and enhance crop yields on salinized land. However, a better

mechanisitic understanding is required to improve salt stress tolerance. We

used a biochemical and metabolomics approach to study the effect of salt

stress of hydroprimed maize to identify the types and variation of differentially

accumulated metabolites. Here we show that hydropriming significantly

increased catalase (CAT) activity, soluble sugar and proline content, decreased

superoxide dismutase (SOD) activity and peroxide (H2O2) content. Conversely,

hydropriming had no significant effect on POD activity, soluble protein and MDA

content under salt stress. The Metabolite analysis indicated that salt stress

significantly increased the content of 1278 metabolites and decreased the

content of 1044 metabolites. Ethisterone (progesterone) was the most

important metabolite produced in the roots of unprimed samples in response

to salt s tress. Pathway enrichment analysis indicated that flavone and flavonol

biosynthesis, which relate to scavenging reactive oxygen species (ROS), was the

most significant metabolic pathway related to salt stress. Hydropriming

significantly increased the content of 873 metabolites and significantly

decreased the content of 1313 metabolites. 5-Methyltetrahydrofolate, a methyl

donor for methionine, was the most important metabolite produced in the roots

of hydroprimed samples in response to salt stress. Plant growth regulator, such

as melatonin, gibberellin A8, estrone, abscisic acid and brassinolide involved in

both treatment. Our results not only verify the roles of key metabolites in

resisting salt stress, but also further evidence that flavone and flavonol

biosynthesis and plant growth regulator relate to salt tolerance.
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1 Introduction

Soil salinization is a major environmental stressor hindering

global crop production, risking food security and weakening global

efforts towards the Sustainable Development Goals (Wang et al.,

2022). Because saline soil affects seed germination and seedling

establishment (Farooq et al., 2015), priming crop seeds before

germination has emerged as a promising approach to reduce

seedling salt stress and enhance crop yields on salinized land

(Hussain et al., 2023).

Seed priming involves exposing crop seeds to natural and/or

synthetic compounds (Hernandez-Apaolaza, 2022) that cause the

activation of early germination events. This makes primed seeds

more resilient to environmental stressors, leading to increased

survival rates. Seed priming methods include invasive (hydro-,

osmo-, halo-, solid matrix, bio- or nano-priming) and non-

invasive (magneto, UV-irradiation, g-radiation, cold plasma,

electron and laser priming) processes (Hernandez-Apaolaza,

2022). Among these, hydropriming offers a sustainable and low-

cost means to improve seed germination and seedling emergence in

salt affect soil (Yan, 2016; Yaghoubian et al., 2022).

Maize (Zea mays) is a globally critical cereal crop that is

sensitive to salinized soil conditions (Farooq et al., 2015). Several

studies have focused on the effectiveness of priming maize seeds to

mitigate salt stress, highlighting the physical-biochemical response

in its germination and establishment (Chattha et al., 2022; Hamna

et al., 2022; Samra et al., 2022). However, little attention has been

paid so far to the metabolic response of hydroprimed maize under

salt stress in the early development stage. A systematic assessment

of endogenous plant metabolites (metabolomics) can help unravel

metabolic networks and shed light on interactions between plants

and the environment (Abideen et al., 2022). Roots are in close

contact with the soil solution, they are first to confront excessive

salinity and are the first places of “line of defence”. Therefore,

differences among roots may (partially) underlie distinguishing salt

tolerances(Rewald et al., 2013)

In this study, we used a metabolomics approach to study the

effect of salt stress of hydroprimed maize to identify the types and

variation of differentially accumulated metabolites in roots with the

objective to provide a scientific basis for enhancing salt

tolerant traits.
2 Materials and methods

2.1 Hydropriming

Maize seeds (cv Tiantai 316, a high-quality and high-

yielding maize variety) were surface sterilized and soaked in

deionized water under dark conditions (24 hours; 20 °C). After

soaking, the seeds were rinsed (×3) with deionized water and then

air-dried (48 hours; room temperature) to back their initial

moisture content.
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2.2 Germination tests

Germination tests (3 replicates; 20 seeds per replicate) involved

placing seeds in transparent germination boxes on filter paper

wetted with saline water (15 mL; 150 mM NaCl), or deionized

water (15 mL) as a control. The seeds were allowed to germinate

under light/dark cycles (12/12 hour) at 25 °C for 7 days.

Germination was considered to occur when the radicle protruded

through the seed coat, with the number germinated seeds recorded

daily. The germination potential was calculated as ∑(Gn/Tn) where

Gn is the number of germinated seeds on day n and Tn is day n.

Then, the seedling were divided into two parts. One part was

oven dried (80°C; 24 hours) and the seedling, root and shoot dry

weight recorded. The roots of the other part were immediately used

for biochemical and metabolite analyses.
2.3 Biochemical analyses

2.3.1 Hydrogen peroxide analysis
Peroxide (H2O2) levels were determined according to Sergiev

et al. (1997). In brief, root sample (0.5 g fresh weight) was

homogenized in trichloroacetic acid (5 mL; 0.1% w/v) and

centrifuged (12,000 rpm; 15 min). The supernatant (0.5 mL) was

mixed with potassium phosphate (0.5 ml; 10 mM; pH7.0) and

potassium iodide (1 mL; 1 M) before being allowed to develop for 1

hour in dark conditions. The H2O2 concentration was then

measured spectrophotometrically at 390 nm.

2.3.2 Antioxidant enzymes, lipid peroxidation, and
soluble protein analysis

Root samples were first treated with liquid nitrogen and mixed

with potassium phosphate buffer (50 mM; pH 7.0) containing Na-

EDTA (2 mM) and then centrifuged. Superxoide dismutase (SOD)

activity was then measured in the supernatant by its ability to

inhibit the reduction of nitroblue tetrazolium at 560 nm (Dhindsa

et al., 1981). Peroxidase (POD) activity was assayed according to

Chance and Maehly (1955). CAT activity was measured as

described by Aebi (1984). Malondialdehyde (MDA) was

determined according to the thiobarbituric acid assay described

by Heath and Packer (1968). Soluble proteins were measured

according to Bradford (1976).

2.3.3 Soluble sugars and proline analysis
Soluble sugars were measured using the anthrone method

(Irigoyen et al., 1992) and proline was determined according to

Bates et al. (1973).

2.3.4 Sodium and potassium analysis
Roots samples were washed with deionized water followed by air

and oven drying(24 hours; 80°C). Dried powder samples (0.1 g) were

treated with concentrated nitric acid (10 mL) for 12 h. Each digested

material was then diluted with deionized water to a definite volume
frontiersin.org
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(100 mL). The contents of Na+ and K+ were determined by flame

photometry according to the method described by Williams and

Twine (1960).
2.4 Metabolite analyses

2.4.1 Metabolite extraction
Frozen root samples (3 replicates; ~50 mg per replicate) were

transferred to Eppendorf tubes (2 mL). Then, methanol/

acetonitrile/water (1 mL; 2:2:1 v/v/v) containing ribitol (20 µL; 1

mg/mL) was added as an internal standard. The samples were

vortexed (30 s), homogenized using a ground powder system (45

Hz; 10 min), subjected to supersonic processing in ice water (10

min), cultured (-20 °C; 1 hour) and centrifuged (12,000 rpm; 15

min; 4 °C). Then the supernatant (500 µL) was transferred to an

Eppendorf tube and dried in a vapor concentrator. The samples

were dissolved in acetonitrile/water (160 µL; 1:1 v/v), vortexed

(30 s), sonicated (10 min) and centrifuged (12,000 rpm; 15 min;

4 °C). The supernatant (120 µL) was dispensed into glass vials and

10 µL of each sample was mixed into a QC sample for assay analysis.

2.4.2 LC-MS/MS analysis
A Waters Acquity I-Class PLUS ultra-high performance liquid

tandem Waters Xevo G2-XS QTOF high-resolution mass

spectrometer installed with a Waters Acquity UPLC HSS T3

(1.8µm 2.1*100mm) column was used for metabolomics analyses.

The following parameters were applied:

Positive ion mode: mobile phase A: 0.1% formic acid aqueous

solution; mobile phase B: 0.1% formic acid acetonitrile. Negative ion

mode: mobile phase A: 0.1% formic acid aqueous solution; mobile

phase B: 0.1% formic acid acetonitrile. The step elution program was as

follows: 0 min, 98% A; 0.25 min, 98% A; 10 min, 2% A; 13 min, 2% A;

13.1 min, 98% A; 15 min, 98% A; the injection volume was 1 µL. MS/

MS profiles were obtained using triple TOF-MS based on information

acquisition technique (IDA). MS databases were continuously collected

and evaluated by acquisition software with full scan survey (Analyst TF

1.7, AB Sciex), and MS/MS spectra were acquired depending on preset

parameters. Within each cycle, precursor ions with strengths above 100

were picked and then fragmented at 30 V collision energy (CE) (15

MS/MS events every 50 ms). The electrospray ionization (ESI) source

was set to 60 PSI nebulizer pressure, 60 PSI auxiliary gas pressure, 30

PSI air curtain pressure, 650 °C source temperature, and ion spray

voltage float (ISVF) of 5000 or -4000 V in positive and negative

patterns, respectively.

Primary and secondary mass spectrometry data were collected

in MSe mode (MassLynx V4.2, Waters). In each data acquisition

cycle, dual-channel data acquisition was performed on both low

collision energy and high collision energy at the same time. The low

collision energy was 2V, the high collision energy range was

10~40V, and the scanning frequency was 0.2 seconds for a mass

spectrum. The parameters of the ESI ion source are as follows:

Capillary voltage: 2000V (positive ion mode) or -1500V (negative

ion mode); cone voltage: 30V; ion source temperature: 150°C;
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desolvent gas temperature 500°C; backflush gas flow rate: 50L/h;

Desolventizing gas flow rate: 800L/h.

2.4.3 Data analysis
Firstly, peak areas were normalized to the total peak area. Then,

principal component analysis and Spearman correlation analysis

were used to assess the repeatability of the samples. Identified

compounds were searched for classification and pathway

information in KEGG, HMDB and lipidmaps databases. T-tests

were performed to determine significant differences between each

compound. R (programming language) with the ropls software

package was used to perform principal component analysis (PCA)

and OPLS-DA modeling, with 200 permutations performed to verify

the reliability of the model. VIP values were calculated using multiple

cross-validation. The difference multiple, P value and the VIP value of

the OPLS-DA model was used to screen the differential metabolites

(criteria = FC > P<0.05 and VIP > 1). Difference of metabolites of

KEGG pathway enrichment significance were calculated using a

hypergeometric distribution test.
2.5 Validation of metabonomics data by
quantitative real-time reverse transcription
polymerase chain reaction

To validate our data, four genes (delta-1-pyrroline-5-carboxylate

synthase 2 (P5CS, Gene ID:100280719), caffeic acid 3-O-

methyltransferase (COMT, Gene ID:100125646), catalase isozyme 2

(CAT2, Gene ID:542230) and steroid reductase DET2(Gene

ID:100283443) were selected for qRT-PCR assay, with three

biological replicates used for each analysis. The primer used for one

internal reference gene (Actin) and the four selected genes are shown in

Table S1. Total RNA was extracted from the maize roots samples

treated with either 150 mMNaCl or water by the RNA extraction kit

(Monad Biotech, Suzhou, China) following the manufacturer’s

instructions. The concentration and integrity of each RNA samples

was examined by BioPhotometer measurement and 1% agarose gel.

Based on the recommendation of the TUREscript 1st Stand cDNA

SYNTHESIS Kit (Aidlab, Beijing, China), 2 µg total RNA was

measured to perform the cDNA synthesis. The PCR reactions were

performed on the analytik Jena-qTOWER2.2 Real-Time QPCR System

using the following program: denaturation at 95°C for 3min followed

by 39 cycles of 95 °C for 10 s and 60°C for 30 s, and terminated at 72°C

for 60 s. Dissociation curve analysis was performed to determine the

target specificity. The 2-DDCT method was used to calculation of the

relative expression of selected genes normalized to a maize Actin gene.
2.6 Statistical analysis

A statistical analysis was carried out using SPSS 19.0 software

(IBM). Germination percentage data were arcsine transformed

before an analysis of variance. Mean comparisons were performed

using a Duncan test (5% probability).
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3 Results

3.1 Effect of salt stress on germination and
seedling traits

The effect of salt stress on germination and seedling traits is

illustrated in Figures 1, 2; Figure S1. Salt stress severely inhibited the

germination of unprimed samples and significantly decreased the

germination traits [germination percentage (Figure 2A) and

germination potential (Figure 2B)] and early seedling growth

[seedling fresh weight (Figure 2C), seedling dry weight

(Figure 2D), root dry weight (Figure 2E) and shoot dry weight

(Figure 2F)] compared to the control. In comparison, hydroprimed

sample displayed significantly improved germination and early

seedling growth in all aspects apart from shoot dry weight. The

germination percentage (Figure 2A) and root dry weight

(Figure 2E) of hydroprimed samples achieved level not

significantly different to the control (i.e., unhindered by salt

conditions). Furthermore, the germination potential of primed

samples actually superseded that of the control (Figure 2B).

However, the shoot dry weight of primed samples was not

significantly different to unprimed samples under salt

stress (Figure 2F).
3.2 Effect of salt stress and hydropriming
on physiological and biochemical traits

The effect of salt stress on the physiological and chemical traits

of unprimed and hydroprimed samples is shown in Figures 3, 4. We

found that salt stress had no significant effect on CAT activity of the

unprimed samples, while hydroprimed samples had significantly

increased CAT activity under salt stress (Figure 3A). Salt stress

decreased POD activity of unprimed samples under salt stress, while

hydropriming treatment had no significant effect on POD activity

under salt stress (Figure 3B). For unprimed samples, SOD activity

(Figure 3C), H2O2 (Figure 3D), MDA (Figure 3E) levels all

significantly increased under salt stress. SOD activity of

hydroprimed samples was lower than the unprimed one and

significantly higher than the control (i.e., not salt stress effect)
Frontiers in Plant Science 04
(Figure 3C). The H2O2 content of hydroprimed samples was lower

than the unprimed one and not significantly different to the control

(i.e., not salt stress effect) (Figure 3D). MDA content of

hydroprimed samples was not significantly different to the

unprimed samples (Figure 3E).

Soluble protein (Figure 4A), soluble sugars (Figure 4B), proline

(Figure 4C) levels all significantly increased under salt stress,

hydropriming treatment had no significant effect on soluble

protein under salt stress (Figure 4A). Soluble sugars (Figure 4B)

and proline (Figure 4C) levels in primed samples increased. Salt

stress decreased K+/Na+ ration of unprimed samples under salt

stress, while hydropriming treatment had no significant effect on

K+/Na+ ratio under salt stress (Figure 4D).
3.3 Change in metabolites and metabolic
pathways in unprimed samples in response
to salt stress

A total of 3418 intracellular metabolites were detected(Table

S2), for which we compared the differences between the roots of

unprimed samples with and without salt stress by a multivariate

statistical analysis. The PCA score plot shows two principal

components accounting for 86.1% of the variability (Figure 5A),

while the OPLS-DA score plot (R2 = 0.94; Q2 = 0.998) shows a clear

distinction in the metabolite profiles between the salt-stressed roots

and the control (Figure 5B).

We screened 2322 differential metabolites between the roots

from unprimed seeds under control and salt stress condition (VIP >

1; p < 0.05) (Table S3). Among them, 1278 metabolites significantly

increased and 1044 metabolites significantly decreased in the NaCl-

stressed samples compared to the control (Table S3). VIP scores

obtained from PLS-DA and OPLS-DA analyses indicated that some

metabolites made important contribution to the separation of the

salt stresses samples from control. The 10 most important

metabolites identified from VIP and PCA scores were in the

order of: Ethisterone (progesterone); Menadione (Vitamin K3);

10-Deacetyl-2-debenzoylbaccatin III; Neomycin B; Pelargonidin

3-O-(6-caffeoyl-beta-D-glucoside); 5-O-beta-D-glucoside; 6-

Gingerol; Dexamethasone, N6-(L-1,3-Dicarboxypropyl)-L-lysine;

Tacrolimus and Quinate (Table S3).

We identified 256 metabolic pathways with 421 differential

metabolites. Among these pathways, Flavone and flavonol

biosynthesis, CoA biosynthesis, Vitamin B6 metabolism,

Terpenoid backbone biosynthesis and Histidine metabolism were

the top five predominant metabolic pathway (Figure 6).

Flavone and flavonol biosynthesis was the only pathway that

was significantly (p<0.05) affected by salt stress with an increase for

10 metabolites and a decrease for 2 metabolites. The concentration

of Luteolin 7-O-beta-D-glucoside (prunin), 3,7,4 ’-Tri-O-

methylquercetin, Chrysoeriol, Scolymoside(luteolin 7-O-

rutinoside), Kaempferol 3-O-glucoside, 3,7-Di-O-methylquercetin,

Luteolin 7-O-glucuronide, Quercetin 3-methyl ether, Rutin,

Quercetin 3-O-glucoside increased 18.44-fold, 18.38-fold, 11.37-

fold, 4.36-fold, 3.73-fold, 3.60-fold, 3.20-fold, 3.06-fold, 2.30-fold,

2.06-fold, respectively. Kaempferol and Acacetin decreased.
FIGURE 1

Comparative growth of seedlings of unprimed and hydroprimed
samples under salt stress (NaCl) and control (unprimed water) on
7th day.
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3.4 Change in metabolites and metabolic
pathways in hydroprimed samples in
response to salt stress

For hydroprimed samples, the results of the PCA score plot

showed that the samples were clearly separated by two principal

components, which explained 82.4% of the variability (Figure 7A).

The OPLS-DA score plot (R2 = 0.908; Q2 = 0.994) also shows a clear

distinction in the metabolite profile of unprimed and hydroprimed

samples under salt stress (Figure 7B).

A total of 2186 differential metabolites were screened (VIP > 1;

p < 0.05), between the roots from unprimed and hydroprimed seeds

under salt stress condition (Table S4). Among them, 873

metabolites significantly increased and 1313 metabolites

significantly decreased in the hydroprimed samples compared to

the control (Table S4). VIP scores obtained from PLS-DA analysis

and loading plots from OPLS-DA (Figure not presented) analysis

indicated that 5-Methyltetrahydrofolate and some metabolites were

of important contributing to the separation of the hydropriming

treatment samples from control. The top 10 most important

contributory obtained from VIP and PCA scores were 5-

Methyltetrahydrofolate, 24-Hydroxy-beta-amyrin, Dethiobiotin,

3alpha,7alpha-Dihydroxy-5beta-cholestane, Piperideine, (S)-

Autumnaline, Formononetin 7-O-glucoside-6’’-O-malonate, 2-

Heptyl-4(1H)-quinolone, 2-Hydroxycinnamic acid, Lupinine, 2-

Methylglutaric acid (Table S4).
Frontiers in Plant Science 05
Among the 2186 differential metabolites, 374 differential

metabolites involved in 254 metabolic pathways. Flavone and

flavonol biosynthesis, Valine,leucine and isoleucine degradation,

Toluene degradation, Dopaminergic synapse, Polycyclic aromatic

hydrocarbon degradation were the top five predominant metabolic

pathway (Figure 8). Thus, none of these metabolic pathways was

significantly affected by hydropriming treatment.
3.5 Shared features of salt stress and
hydropriming treatment on metabolites

The metabolites between salt stress and hydropriming

treatment maize roots were compared in this study. Between the

salt stress and hydropriming treatment group, 422 increased (Table

S5) and 379 decreasd (Table S6) overlapping metabolites were

identified (Figure 9). We noticed that plant growth regulator,

such as melatonin, gibberellin A8 and estrone increased, while

abscisic acid and brassinolide decreased in both treatment.
3.6 Expression of selected genes

The effects of salt stress on the expression of four genes of

unprimed and hydroprimed samples is shown in Figures S2 and 10.

We found that salt stress had no significant effect on the expression
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of P5CS, COMT and steroid reductase DET2 in the unprimed

samples (Figures 10A, B, D), and increased the expression of

CAT2 (Figure 10C). Hydroprimed samples had significantly

increased the expression of four genes under salt stress

(Figures 10A–D).
4 Discussion

4.1 Effects of salt stress and hydropriming
treatment on germination and early
seedling growth

Exogenous and endogenous factors including salinity affect

maize germination and seedling growth (Mahara et al., 2022).

The present study indicated that 150 mmol.L-1 NaCl significantly

inhibited germination and seedling growth. The germination traits

(germination percentage and germination potential) and seedling

traits (seedling dry weight, root dry weight and shoot dry weight) of

unprimed seeds significantly decreased under salt stress. We found

that hydropriming treatment significantly improved germination

and seedling growth of maize under salt stress, which is in

agreement with previous research (Mahara et al., 2022). The dry

weight of seedlings and shoots of hydroprimed samples were higher

than those of seedlings from unprimed seeds under salt stress, but

lower than those of seedlings from unprimed seeds. Thus, the dry

weight of roots from hydroprimed seeds reach the level of that of

unprimed seeds under non-salt stress conditions, which means that
Frontiers in Plant Science 06
the improvement in seedling growth mainly manifested in

promoting root growth.
4.2 Physiology and biochemical responding
to salt stress and hydropriming

Previous studies have indicated that salt stress often leads to

excessive production of reactive oxygen species (ROS), such as

superoxide (O2
•-), hydroxyl radical (•OH) and hydrogen peroxide

(H2O2), which attack biomacromolecules and results in lipid

peroxidation, protein degradation and membrane damage

(Choudhary et al., 2020). The antioxidant enzymes SOD, CAT and

POD are crucial to alleviating oxidative damage by scavenging ROS

(Choudhary et al., 2020). SOD is the first line of antioxidant defense

and transforms superoxide radicals to H2O2 and form hydroxyl

radicals (Choudhary et al., 2020; Hai et al., 2022). In this study, we

found that SOD activity significantly increased under salt stress.

MDA is an index of lipid peroxidation and accumulates when the

antioxidant defenses fail to maintain ROS levels (Choudhary et al.,

2020). We found that MDA levels increased in salt stressed roots,

attributed to excessive H2O2. Importantly, hydropriming significantly

decreased H2O2 levels under salt stress and curtailed an increase

MDA. The positive effect of hydropriming is likely related to

increased antioxidant CAT activity, which detoxifies H2O2 to

oxygen and water (Choudhary et al., 2020). However, due to the

decrease of SOD activity, MDA content of primed samples was

significantly higher than unprimed samples under salt stress.
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FIGURE 3

Influence of salt stress and hydropriming treatment on the activities of CAT (A), POD (B), SOD (C), and content of H2O2 (D), MDA (E) in maize roots.
Different letters (a and b) indicate significant differences among treatments according to Duncan’s test (p < 0.05). Error bars indicate ± SE of mean (n = 3).
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In present study, the expression of CAT2 increased while

catalase activity remained unchanged in salt stress roots, which

may be caused by the decreased expression of other isoenzymes of

catalase. In hydropeimed roots, increased CAT activity appeared

linked to the increase expression of CAT2.

The influence of salt stress on soluble protein content generally

relates to salt tolerance of plants (Gandonou et al., 2011). Previous

studies of sugarcane plants have indicated that salt stress leads to an

increase in soluble proteins in salt tolerant cultivars and a decrease

in salt sensitive cultivars (Gandonou et al., 2011). The increase is

probably related to stress proteins, which play important roles in

osmotic adjustment under stress conditions (Timperio et al., 2008).

The present findings elucidated that salt treatment significantly

increased soluble protein content in maize seedlings under salt
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stress. Hydropriming did not increase further the amount of soluble

protein produced under salt stress.

Plants also accumulate proline and sugars under water stress

(Boughalleb et al., 2020). Soluble sugars are involved in osmo-

regulation in plants exposed to osmotic stress (Boughalleb et al.,

2020). Proline has been considered a compatible osmoregulator,

contributing to cellular osmotic adjustment and cellular and

physiological homeostasis maintenance in salt-stressed plants

(Boughalleb et al., 2020). The present findings indicated that salt

stress in unprimed and hydroprimed samples significantly

augmented proline and sugar content. This is in agreement

with previous data showing enhanced proline and sugar content

contributing to mitigating adverse effects of salt stress (Boughalleb

et al., 2020).
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FIGURE 5

PCA (A) and PLS-DA (B) analyses of metabolic profiles of roots from unprimed maize seeds under with and without salt stress. group A, roots from
unprimed maize seeds without salt stress; group B, roots from unprimed maize seeds under salt stress.
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Delta-1-pyrroline-5-carboxylate synthase 2 (P5CS) encoding

delta1 -pyrroline-5-carboxylate synthase (P5CS) has been

reported as the main responsible gene in proline biosynthesis

(Lutts et al., 1999). In present study, the interesting point is the

differences between high proline content and low expression levels

of ZmP5CS2 in salt stressed roots, which indicated that the

accumulation of proline can not be only a result of increased

stress-induced expression of ZmP5CS2. In the meantime, the

accumulation of proline accompanying with the increase

expression of ZmP5CS2 in hydroprimed roots showed ZmP5CS2

seem to relate to salt tolerance.

K+/Na+ ratio is often used as a salt tolerance criterion and

higher K+/Na+ ration accompanied with better growth under salt

stress (Chen et al., 2023). Present study indicated the K+/Na+ ratio

decreased under salt stress, while hydropriming treatment had no

significant effect on K+/Na+ under salt stress. This suggests that the

enhanced salt tolerance of hydropriming treatment was not caused

by ion homeostasis.
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4.3 Metabolites and metabolic pathway
responding to salt stress

We found that Ethisterone (progesterone) was the most

important metabolite produced in the roots grown from

unprimed seeds in response to salt stress. Progesterone is a

steroid hormone and ubiquitous in plants at low levels (Li et al.,

2022), which enhances antioxidant enzyme activity and affects the

K+/Na+ ratio and pigment content (Li et al., 2022). The amount of

progesterone in the roots of unprimed samples significantly

decreased under salt stress, while it significantly increased in

hydroprimed samples, in accord with previous results (Li

et al., 2022).

Menadione is a superoxide-releasing compound and generates

ROS through redox cycling (Loor et al., 2010). The metabolite in the

roots of unprimed samples significantly increased in response to salt

stress. Hydropriming also significantly increased it. We interpret
FIGURE 6

The top 20 the Kyoto Encyclopedia of Genes and Genomes (KEGG)-
enriched metabolism pathway of differential metabolites between
roots from unprimed maize seeds under with and without salt stress.
BA

FIGURE 7

PCA (A) and PLS-DA (B) analyses of metabolic profiles of roots from unprimed and hydroprimed maize seeds under salt stress. group B, roots from
unprimed maize seeds under salt stress; group C, roots from hydroprimed maize seeds under salt stress.
FIGURE 8

The top 20 the Kyoto Encyclopedia of Genes and Genomes (KEGG)-
enriched metabolism pathway of differential metabolites between
roots from unprimed and hydroprimed maize seeds under
salt stress.
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that the accumulation of ROS resulting from salt stress and

hydropriming signals the production of antioxidant enzymes such

as catalase to scavenge ROS, which otherwise accumulates to

potentially damaging levels. Previous research has shown that

exogenous application of menadione inducing a mild oxidative

stress, leading to chilling tolerance in maize seedlings (Prasad et

al., 1994).

10-deacetyl-2-debenzoylbaccatin III (10-DAB III) is an

important precursor for taxol synthesis (Yu et al., 2021). Salt
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stress tolerance requires microtubule disassembly (Zhou et al.,

2017a), however, the stability of microtubule with taxol reduces

the survival of seedlings under salt stress (Zhou et al., 2017a). We

found that 10-Deacetyl-2-debenzoylbaccatin III significantly

decreased under salt stress. The decrease in 10-Deacetyl-2-

debenzoylbaccatin III may result in the decrease of taxol (not

detected) and lead to the depolymerization of the cortical

microtubule, which increased the survival of seedlings under

salt stress.
FIGURE 9

Venn diagram showing the number of metabolites that increased or decreased in the salt stressed and hydroprimed seedlings. The numbers next to
up and down arrows indicated the number of upregulated and downrugulated differentially metabolites.
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Neomycin B is an aminoglycoside antibiotic, which displaces

divalent metal ions bound to RNA and inhibits translation in

prokaryotes (Waldsich et al., 1998). We found that Neomycin B

significantly decreased due to salt stress and hydropriming. The

decreased of Neomycin B results in an increase of translation, which

is consistent with the increase of soluble proteins under salt stress

and hydropriming.

Pelargonidin 3-O-(6-caffeoyl-beta-D-glucoside) 5-O-beta-D-

glucoside is a acylated anthocyanin, stimulated by increasing

concentrations of NaCl in seedlings (Eryilmaz, 2006).It has been

shown to confer significant salt stress tolerance in Brassica napus L

(Kim et al., 2017). We found that salt stress and hydropriming

treatment both significantly increased the content of Pelargonidin

3-O-(6-caffeoyl-beta-D-glucoside) 5-O-beta-D-glucoside.

[6]-gingerol possess strong antioxidant properties, decreases

peroxidation of phospholipid liposomes in the presence of iron(III)

and ascorbate (Aeschbach et al., 1994). We found a decrease of [6]-

Gingerol accompanying the increase of H2O2 under salt stress.

Hydropriming significantly increased [6]-Gingerol with the

decrease of H2O2.

Dexamethasone is a potent glucocorticoid receptor agonist

and dexamethasone treatments leading to the activation of

mitogen-activated protein kinase3 (MPK3) and MPK6, and

depolymerization of the cortical microtubules (Zhou et al.,

2017b). Zhou et al. (2017) reported that the activation of MPK3

and MPK6 affects the stability of microtubules, which significantly

increased the surviving of seedlings under salt stress (Zhou et al.,

2017b). We found that dexamethasone decreased under salt stress

for unprimed samples and increased for hydroprimed samples. The

variation trend of dexamethasone was consistent with that of seed

germination and early seedling growth.

N6-(L-1,3-dicarboxypropyl)-L-lysine is a key intermediate in

the a-amino adipate pathway for L-lysine biosynthesis (Kiyota

et al., 2015), whereas lysine significantly represses proline and

pipecolic acid synthesis (Kiyota et al., 2015). We found that N6-

(L-1,3-dicarboxypropyl)-L-lysine and L-lysine both decreased and

proline increased due to salt stress for unprimed and

hydroprimed samples.

Tacrolimus is a calcineurin pathway inhibitor (Ma et al., 2005).

Calcineurin is a conserved Ca2+-calmodulin-dependent serine-

threonine-specific protein phosphatase and has multiple functions

including regulating ionic homeostasis (Ma et al., 2005). Previous

research indicated that the expression of mouse calcineurin protein

improved the salt stress tolerance of rice, partly due to limiting Na+

accumulation in the roots (Ma et al., 2005). We found a decrease of

tacrolimus under salt stress, which likely decreased the inhibition of

calcineurin and, thus, increased seedling survival under salt stress.

Quinate is an important marker of salt stress involved in the

shikimate pathway in biosynthesis of aromatic amino acid,

including tyrosine, phenylalanine and tryptophan (Shelden et al.,

2016). We found that quinate significantly increased in the roots of

unprimed and hydroprimed samples under salt stress. Tyrosine and

phenylalanine both significantly decreased under salt stress.

Changes in tryptophan were not obvious. Thus, increased quinate

levels may relate to decrease used as a precursor for aromatic amino

acid synthesis.
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Salt stress also influences metabolic pathways. We found that

flavone and flavonol biosynthesis was the most significantly affected

among 256 pathways affected by NaCl stress. Related metabolites,

including Luteolin 7-O-beta-D-glucoside, 3,7,4 ’-Tri-O-

methylquercetin, Chrysoeriol, Scolymoside, Kaempferol 3-O-

glucoside, 3,7-Di-O-methylquercetin, Luteolin 7-O-glucuronide,

Quercetin 3-methyl ether, Rutin, Quercetin 3-O-glucoside were

significantly increased under salt stress. In contrast, the content of

Acacetin and Kaempferol significantly decreased under salt stress.

Among the 12 differential metabolites, 10 metabolites increased and

2 metabolites decreased, suggesting that salt stress activated this

pathway in seedlings. Luteolin-7-O-beta-D-glucoside(Luteoloside)

exhibited strong scavenging effect on active oxygens and increase

under salt stress (Cai et al., 2020). 3,7,4’-Tri-O-methylquercetin was

regarded as a contributor to the antioxidant of Phragmites under

copper stress (Wu et al., 2022). Chrysoeriol possess a potent

antioxidant activity and regarded as an important biomarker for

salt tolerance in hulless barley (Wang et al., 2019). Scolymoside

(luteolin 7-O-rutinoside) exhibited higher antioxidant activity than

that of L-ascorbic acid and significantly increased under water-

stressed conditions (Kim et al., 2000). Kaempferol 3-O-glucoside

possess in vitro antioxidant properties (Taiwo et al., 2019). Griesser

et al. (2015) discovered that prolonged drought stress leads to an

increase of kaempferol-3-O-glucoside. 3,7-Di-O-methylquercetin

was found to be related to flavonoids biosynthesis, which involves

in plant defense against pathogens, herbivores, and environmental

stress (Treutter, 2005). Luteolin-7-O-glucuronide possesses

antioxidant activities and may act as reactive oxygen species

scavengers, which was associated with the protective role in olive

trees under field drought conditions (Araújo et al., 2021). Quercetin

3-methyl ether is the active antioxidant principle in the fruits and

stems of Opuntia ficus-indica and markedly inhibited lipid

peroxidation and scavenged free radicals (Dok-Go et al., 2003).

Rutin scavenged hydroxyl radical and prevented K+ leak in quinoa

and broad beans under salinity treatment (Ismail et al., 2015).

Quercetin 3-O-glucoside exhibits high antioxidant effect and

moderate salinity induce the synthesis of quercetin-3-O-glucoside

(Sgherri et al., 2017). Our results are consistent with previous

studies which reported that flavones and flavonol accumulated in

plants exposed to salt stress, and that they enhanced plant salinity

tolerance via scavenging ROS (Zhang et al., 2017). Pathway

diagrams are portrayed in Figure 11.
4.4 Metabolites and metabolic pathway
responding to hydropriming under
salt stress

We found that 5-Methyltetrahydrofolate was the most

important metabolite produced in the roots of hydroprimed

samples under salt stress. As a methyl donor, the methyl group of

5-methyltetrahydrofolate was transform to l-homocysteine

resulting in the formation of methionine (Xu et al., 2010).

Methionine is used in proteins synthesis or converted into S-

adenosylmethionine. The methyl group of S-adenosylmethionine

is applied to DNA and RNA modification and the synthesis of plant
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structural components (Xu et al., 2010). The carbon part of S-

adenosylmethionine is used to generate ethylene and polyamines

(Xu et al., 2010). Ethylene is a pivotal regulator of salt stress

tolerance in plants (Riyazuddin et al., 2020). Polyamines can

regulate the replication of DNA and cell division and the content

of polyamines significantly increased under salt stress (Flores et al.,

1989). Our results indicate that hydropriming significantly

increased the level of endogenous 5-methyltetrahydrofolate under

salt stress, in agreement with previous research (Riyazuddin

et al., 2020).

24-Hydroxy-beta-amyrin is the precursor of soyasapogenol B

(Tamura et al., 2018). Soyasapogenol B is a plant metabolite

belonging to the group of triterpenoid saponins and is reported to

stimulate germination of barley seeds (Evidente et al., 2011). We

found that hydropriming significantly increased 24-OH-b-amyrin

in maize roots under salt stress.

Dethiobiotin is the precursor of biotin (Wienhausen et al.,

2022). Biotin is a water-soluble vitamin and required for normal

cellular function and growth (McMahon, 2002). Biotin addition can

enhance salt tolerance (shown in Torulopsis mogii) by accumulating

glycerol and trehalose, improving fatty acid synthesis with longer

chains and higher saturation, which enhances the stability of the cell

structure, increasing PM-ATPase activity, and decreasing the ratio

of K+/Na+(Chen et al., 2015). It is known that the relative

proportions of saturated and unsaturated fatty acids affect the

fluidity and permeability of the cell membrane (Chiang et al., 2005).

3a, 7a-dihydroxy-5b-cholestane is the intermediate bile acid

synthesis (Kimura et al., 1988). In the presence of iron ions,

hydrophobic bile acids may enhance lipid peroxidation (Sreejayan

and Ritter, 1998). We found that 3a,7a-Dihydroxy-5b-cholestane
increased in roots of unprimed and hydroprimed samples under salt
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stress, with no bile acid was detected, which indicates that the

increase of 3a,7a-Dihydroxy-5b-cholestane was due to decreased

synthesis of bile acid. A decrease of bile acid may result in a decrease

of lipid peroxidation.

(S)-autumnaline is the precursor of cadaverine, which

affects growth and development under normal and stress

environments (Kuznetsov et al., 2007). Cadaverine decreases

salt-induced impact, which is attributed to its antioxidative

funct ion scavenging of free radicals . We found that

hydropriming significantly increased (S)-autumnaline and

colchicine in mazie roots under salt stress, which was in

accordance with the observed decrease in H2O2.

Formononetin 7-O-glucoside-6’’-O-malonate is an intermediate

in the elicitor-induced formation of pterocarpan phytoalexins, whose

synthesis is known to be induced by biotic and abiotic stress factors

(Dixon and Paiva, 1995). We found that hydropriming significantly

increased Formononetin 7-O-glucoside-6’’-O-malonate in maize

roots under salt stress.

2-heptyl-4(1H)-quinolone is the core structure of several

alkaloids and may act as a messenger molecule in a cell-cell-

communication pathway (Déziel et al., 2004). It also acts as co-

inducer of the transcriptional regulator PqsR (Xiao et al., 2006). We

found that hydropriming significantly increased 2-Heptyl-4(1H)-

quinolone in maize roots under salt stress.

2-Hydroxycinnamic acid is a derivative of hydroxycinnamic

acids, which is involved in the regulation of plant growth and

development and response to environmental stress (Luo et al.,

2009). We found that that hydropriming significantly increased 2-

Hydroxycinnamic acid in maize roots under salt stress.

Lupinine is a piperidine alkaloid whose concentration increases

in plants under stress situations (Gill and Tuteja, 2010). We found
FIGURE 11

Changes in metabolic pathways of maize roots responding to salt stress. Red-marked metabolites indicated that the metabolite concentration
increased significantly under salt stress(p<0.05). Green-marked metabolites indicated that the metabolites concentration decreased significantly
under salt stress(p<0.05). Black-marked metabolites showed no significant change.
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that hydropriming significantly increased piperideine and lupinine

in maize roots under salt stress.

2-Methylglutaric acid is the precursor of acetic acid (Scott,

1967). Previous research indicates that acetic acid priming may

mitigate salt stress to plants by modulating lipid metabolism (Hu

et al., 2021). We found that hydropriming significantly increased 2-

Methylglutaric acid in maize roots under salt stress.

Plant growth regulators play critical roles in regulating plant

responses to stress at extremely low concentration (Fariduddin

et al., 2019). Melatonin is regarded as a candidate phytohormone

that affects responses to biotic and abiotic stresses (Li et al., 2019).

Rapid accumulation of melatonin in plants enhances salt resistance

via its actions on antioxidants, photosynthesis, ion regulation and

stress signaling (Li et al., 2019). Present study indicated that

melatonin increased in salt-stressed and hydroprimed maize

roots, which is agreement with previous result of Li et al. (2019).

Caffeic acid 3-O-methyltransferase(COMT) encodes caffeic

acid O-methyltransferase, which is a multifunctional enzyme

responsible for lignin and flavonoid biosynthesis (Kim et al.,

2006). Caffeic acid O-methyltransferase can catalyse N-

acetylserotonin into melatonin, suggestive of alternative

melatonin pathways in plants (Chang et al., 2021). In present

study, melatonin increased in salt-stressed and hydroprimed

maize roots, while the expression of COMT remained unchanged

in salt-stressed roots and increased in hydroprimed maize roots.

Present study suggested the gene products (caffeic acid O-

methyltransferase) is not the rate-limiting enzyme for melatonin

synthesis, which is in accord with the result of Byeon et al. (2015).

Caffeic acid O-methyltransferase is also known as flavone 3’-O-

methyltransferase and responsible for flavonoid biosynthesis.

Flavone 3’-O-methyltransferase can transfer the methyl group

specifically to the 3’-hydroxyl group of quercetin and luteolin,

resulting in the formation of 3’-O-methylquercetin and 3’-O-

methylluteolin (chrysoeriol). 3’-O-methylquercetin is further

methylated to 3,7-Di-O-methylquercetin and ayarin (3,7,4’-Tri-O-

methylquercetin) (Kim et al., 2006). In present study, 3’-O-

methylquercetin remained unchanged in salt-stressed roots and

decreased in hydroprimed maize roots. 3,7-Di-O-methylquercetin

and ayarin increased in salt-stressed roots and decreased in

hydroprimed maize roots. Chrysoeriol increased in salt-stressed

and hydroprimed maize roots. While the expression of COMT

remained unchanged in salt-stressed roots and increased in

hydroprimed maize roots. Present study suggested flavone 3’-O-

methyltransferase is not the rate-limiting enzyme for ayarin and

chrysoeriol synthesis. The increase of chrysoeriol in hydroprimed

maize roots may be related with increased expression of Flavone 3’-

O-methyltransferase (Caffeic acid O-methyltransferase).

The alteration of endogenous levels of gibberellins is regulated

by both developmental and environmental stimuli (Ryu and Cho,

2015). The triggering of gibberellins by salinity was depending on

NaCl dosage, Gibberellins 8 was down accumulated at lower dosage

and up accumulated at high dosage (Benjamin et al., 2019). Present

results indicated that Gibberellins 8 increased under salt stress,

which was in accord with previous results of Benjamin et al. (2019).

Present study also indicated that Gibberellin A8 increased in

hydroprimed roots, which is in accord with Ryu and Cho (2015)
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who found that GA application could be helpful to improve crop

yields under salt stress condition.

Estrone is a steroid estrogen, which inhibit plant growth at high

levels and promoted plant growth at low levels (Adeel et al., 2018).

Present results indicated estrone decreased in salt-stressed and

hydroprimed samples, which means maize adapted to salt stress by

reducing estrogen content and hydropriming treatment promotes

growth of maize under salt stress by reducing estrogen content.

Present results is in agreement with the discover of Adeel et al. (2018).

Abscisic acid(ABA) is a phytohormone enabling plants to

survive salt stresses (Costa et al., 2007). Cramer and Quarrie

(2002) observed a negative relationship between leaf growth and

ABA concentration under salt stress. Costa et al. (2007) observed

that higher ABA is related to increased resistance to salt stress. The

difference between the two results could attribute to differences in

experimental methodology and differences in the range of ABA

concentrations observed. Costa et al. (2007) spectulated that the

growth-promotiing effect of low concentration ABA in plants under

salt stress was dominant over its growth-inhibiting effect. Present

results indicated ABA decreased in salt-stressed and hydroprimed

samples, which means maize adapted to salt stress by reducing ABA

content and hydropriming treatment promotes growth of maize

under salt stress by reducing ABA content. Present results is in

agreement with the spectulation of Costa et al. (2007).

Previous study indicated that brassinolide affects potato root

growth in a dose-dependent manner (Hu et al., 2016). Low

brassinolide concentrations promoted root elongation and lateral

root development, whereas high brassinolide concentrations

restrained root elongation (Hu et al., 2016). Present study showed

that brassinolide decreased due to salt stress and hydropriming

treatment. We speculated that maize may promote root elongation

by reducing brassinosteroids concentration.

As reported, steroid reductase DET2 catalyzes the conversion of

campestanol to castasterone, a major rate-limiting step in

brassinolide biosynthesis (Li et al., 2023). In present study, the

expression of steroid reductase DET2 remind unchange in salt

stressed roots and significantly increased in hydroprimed roots.

Castasterone, the product of steroid reductase DET2 decreased in

salt stressed roots and significantly increased in hydroprimed roots.

Therefore, we speculated that the decreased of brassinolide in salt

stress and hydropriming treatment was due to its degradation.
5 Conclusions

Soil salinization can significantly hamper germination and

growth of maize crops. To combat salt stress, maize increases

SOD activity and accumulates soluble sugar, soluble protein and

proline. We found that maize also adjusts its metabolism. Our

metabolite analysis indicates that salt stress significantly increased

the content of 1278 metabolites and decreased the content of 1044

metabolites. Ethisterone(progesterone), a steroid hormone, was the

most important metabolite produced in the roots grown from

unprimed seeds in response to salt stress. Pathway enrichment

analysis indicated the flavone and flavonol biosynthesis, which

relates to scavenging reactive oxygen species (ROS), was the only
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significantly metabolic pathway affected by salt stress and activated

by salt stress. Hydropriming significantly alleviated the adverse

effects of salt stress and enhanced germination and seedling growth

of maize under salt stress. Hydropriming significantly increased

CAT activity, soluble sugar and proline content, decreased H2O2

under salt stress. Hydropriming significantly increased the content

of 873 metabolites and significantly decreased the content of 1313

metabolites compared to the control. 5-Methyltetrahydrofolate, a

methyl donor for methionine, was the most important metabolite

produced in the roots of hydroprimed samples in response to salt

stress. None of metabolic pathways were significantly affected by

hydropriming treatment. Our results not only verified the

important roles of some metabolites in resisting salt stress, but

also further evidenced that flavone and flavonol biosynthesis and

plant growth regulator relate to salt tolerance. The functions of

other contributory metabolites related to salt stress amelioration in

hydroprimed crops are not yet clear and warrants further analysis.
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