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Abstract

Cadmium (Cd) soil p.''uinr s a global issue affecting crop production and food safety.
Remediation methods involving in-situ Cd immobilization have been developed, but their
effectiveness can diminish under seasonal freeze-thaw aging processes. In this study,
we assessed the field performance of four soil treatments at a seasonally frozen rice
paddy. Amendments were applied at 2 wt.%, including: (i) sepiolite (a 2:1 clay mineral), (ii)
superphosphate, (iii) biochar (produced by rice husk at 500 °C for 2 h), and (iv) joint
application of biochar & superphosphate (1:1 mixture by weight). Immobilization

performance was determined as DTPA extractable Cd and plant uptake in various organs.



Overall, the four treatments significantly reduced Cd bioavailability during the plant
growth period, with average DTPA-extractable concentrations decreasing by 43%, 34%,
39% and 45% for the four treatments, respectively, relative to untreated soil (control).
Rice grain yields from the superphosphate and the joint application treatments increased
by 8.0% and 11.8%, respectively, and Cd accumulation within those grains reduced by
14.3% and 48.9%, respectively. During the winter non-growth period, freeze-thaw aging
facilitated Cd mobilization, with DTPA-extractable Cd increasing by 16.9% in the control
soil, relative to the initial period. However, this reduced to 1" Y4, 14.4%, 7.6% and 5.0%,
for the sepiolite, superphosphate, biochar and joint appicction treatments, respectively.
Overall, the joint application of biochar and superphns hate provided the best
performance in terms of both long-term Cd immokbliotion and rice production
enhancement, offering a green remediation >y ' for risk management at Cd

contaminated rice paddies in seasona. v frozen regions.

Keywords: Soil quality, Soil amendme.*, Bioavailability, Sustainable remediation, Toxic

metal(loid)s

1 Introduction

Cadmium (Cd) is a to.: '« o~u persistent (WHO, 1992) soil contaminant associated with
anthropogenic activities such as mining, metallurgy and electroplating. Plant root
systems uptake soil Cd (Antoniadis et al., 2017; Rizwan et al., 2018) causing ‘cadmium
stress’, which is associated with disturbed photosynthesis and metabolic behavior
(Bashir et al., 2018a; El Rasafi et al., 2020) and decreased enzymatic antioxidant activity
(Abbas et al., 2018). The effect of Cd soil contamination on crops is a threat to food
security and food safety, with human consumption of contaminated food a cause of

emphysema, itai-itai disease, and kidney damage (Chen et al., 2021; Zeb et al., 2020).



Rice crops are consumed by approximately half of the world’s population, with nearly 90%
being cultivated in Eastern and Southern Asia (FAO, 2002). Compared with other cereals,
rice plants uptake and accumulate high amounts of Cd, especially when grown in acidic
contaminated soils (Cwielag-Drabek et al., 2020). This issue is severe in China, where up
to 7% of investigated sampling points during a national soil survey contains Cd levels that
exceed the relevant national standard (Huang et al., 2020a; MEP, 2014). In Hunan
province, for example, 73% of rice grains sampled in a recent study conducted at a Cd
contaminated area exceeded the Chinese national food st~nac.-d (0.2 mg/kg) (Wang et

al., 2016), creating a pathway for this element to affect \iuman health (Yin et al., 2016).

The amount of soil Cd that accumulates in plant ticou s relates to its ‘bioavailability’
(Antoniadis et al., 2017; Tian et al., 2021; Wana €. al., 2019). Recent remediation efforts
have focused on measures for reducing Cd »ioavailability in soil (Bashir et al., 2018b;
Ouhadi et al., 2021). One promising de\ ~.opment is that natural or waste biomass-based
materials (e.g. natural minerals or binc, 2ar) have shown multifaceted benefits as green
and sustainable remediation ma’c. ‘a5 for in-situ Cd immobilization (Hou, 2021a; Jin et al.,
2021). For instance, Sun et ~l. (?016) found that the joint application of sepiolite and
bentonite at an applicatic., -awec of 2.4% decreased exchangeable Cd concentrations by
25.6-23.8% while reducn g9 Cd bioaccumulation in brown rice by 62.1-73.6%, offering a
simple yet effective method for the safe use of contaminated agricultural soil. Ran et al.
(2019) reported that a mixture of clay minerals, animal manure and calcium-magnesium
phosphate fertilizer also effectively decreased bioavailable (DTPA-extractable) Cd by
44.2-51.1%, while enhancing soil enzymatic activities and thus restoring soil health
simultaneously. Such research development aligns well with the sustainable remediation
principles (Hou, 2021b; Hou and O'Connor, 2020). However, the long-term performance

of such soil amendments is not well understood owing to a lack of field studies (Wang et



al., 2022a). Chemical, biological or physical aging processes may increase bioavailability
levels in treated soils and freeze-thaw cycles in seasonally frozen areas may exacerbate

the process (Meng et al., 2020).

Recently, biochar has attracted much attention from the environmental remediation
industry (Hou et al., 2020; IBI, 2005; Yang et al., 2022b). This material is typified by an
abundance of alkaline minerals that increase pH levels in acidic soils, hence, reducing Cd
solubility in soil. Meanwhile, it has a high specific surface area and abundant surface
functional groups, which also adsorbs soil Cd in a direct n-ai.ner (Bandara et al., 2020;
Shaheen and Rinklebe, 2015). In addition to biochar, Z2'1 ¢ ay minerals, such as
palygorskite and sepiolite, have shown promise as a ~0. amendment for metal
immobilization (Hamid et al., 2020; Pei et al., 202). Sepiolite is composed of blocks of
two tetrahedral silica sheets sandwiching a- ocwahedral sheet of magnesium
oxide/hydroxide, exhibiting a high adso:,>’ion capacity towards contaminants due to the
high specific surface area, cation e¥~h.nge capacity, and abundant surface hydroxyl
groups (Hamid et al., 2021; Pad’i..-Uitega et al., 2013). Furthermore,
phosphate-containing compnui.is, such as triple superphosphate, diammonium
phosphate, hydroxyapati‘c “nu apatite, can also immobilize heavy metals by precipitation,
while simultaneously inc. 2asing crop yields (Efthymiou et al., 2018; Rehman and
Qayyum, 2020; Xu et al., 2019). However, application of a certain type of amendment
alone may result in rapidly fading performances in the long run. For clay minerals, ion
exchange is a rather weak immobilization mechanism (Rybicka et al., 1995). Although a
high immobilization rate may be observed at the initial stage due to high specific surface
area of these amendments, loosely-bound metals may in turn release from the clay
mineral under rainfall events (Wang et al., 2020a; Wu et al., 2016) . As for biochar,

freeze-thaw, wet-dry cycling and chemical oxidation induce disintegration and release of



dissolved black carbon, acting as a vehicle for metal migration (Yang et al., 2022a) . For
phosphate fertilizers, the leaching loss of soluble phosphorous indicates that this type of

amendment should be re-applied to soil for long-term immobilization (Cui et al., 2018).

Hence we attempt to find a solution that can stabilize soil Cd effectively under natural
freeze-thaw process. A field trial was setup at a Cd contaminated site in Liaoning
Province, China, with treatments of sepiolite, superphosphate, biochar, biochar &
superphosphate, as well as a control group (no treatment). Sased on the
above-mentioned aging processes, it's proposed that joint apnlication may overcome the
obstacle of a single type of amendment, thus reducing rhe »ioavailability of heavy metals
under natural aging processes. In particular, our re ..t iiterature overview and modelling
works on biochar-mineral interactions for soil met il(loid) immobilization suggested that
assisted long-term immobilization can be arnieved theoretically (Wang et al., 2022b;
Wang et al., 2022c) , hence shedding hy* ¢ on this joint application design of biochar and
superphosphate at field. This work 2imcod to 1) to assess the Cd bioavailability; 2) to
determine the characteristics of . ! iutrients and plant biomass; and, 3) to elucidate the
uptake and accumulation of ©u in rice plants, and 4) to quantify the effect in response to

freeze-thaw induced agir.y.

2 Materials and metniods

2.1 Study area

The field trial site was located in Shenyang, Liaoning Province (N, 41°39'02"; E,
123°05'16") where the soil is classified as an Anthrosol (FAO, 2014). The area is located
in the Northeast China Plain, which has a temperate monsoon climate characterized by
high temperature and rainfall in the summer season, and cold dry weather in the winter. A

weather station recorded meteorological conditions during the experiment (Figure 1),



revealing a minimum temperature of -16.3 °C and a maximum of 31.7 °C. The average
annual precipitation was 821 mm, which mainly occurred during July to September. The

annual evaporation was 1620 mm.
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Figure 1. Meteorological i~wicators during the field experiment (a) ambient temperature and
accumulated radiation; (b) soil evaporation and precipitation

2.2 Materials

Sepiolite, superphosphate and biochar were applied to the soil as soil amendments.
Sepiolite is a magnesium-rich 2:1 clay mineral with layered structure (provided by
Lianyungang Huifu Nano New Material Co., Ltd., China), with a high specific surface area
being 726 m?/g. Superphosphate is a water-soluble phosphate fertilizer composed of

calcium sulfate (CaSQOy), calcium dihydrogen phosphate (Ca(H2PQ,).), and phosphoric



acid (H3PO,) with an effective phosphorus content >18% (provided by Jiangsu Meile
Fertilizer Co., Ltd., China). Biochar was produced from rice husk via slow pyrolysis
(pyrolysis temperature 500 °C, heating rate 15 °C min™", residence time 2 h), . The
specific surface area and total pore volume of the material were 25.38 mz'g'1 and 0.04
cm3'g'1. For the joint application treatment, biochar and superphosphate were thoroughly
mixed before application. Cd concentration in these amendments were all below 0.01

mg/kg.

A laser particle-size analyser was used to determine the s.zc distribution of soil particles
(wet mode). Soil pH was measured using a pH meter ¢t a : olid-liquid ratio of 1:5 (ISO,
2005). Electrical conductivity (EC) was similarly re~.u.1ed using a conductivity meter. Soil
organic carbon (SOC) content was measured witt. a to.al organic carbon (TOC) analyzer.
Soil hydraulic conductivity was measured u« iny a tension infiltration instrument, and the
soil field capacity was determined base.' Jn the Wilcox method (Lu et al., 2014). Soil
metal concentrations (Fe, Mn, Al, CA) v.=re determined by ICP-MS after HNO3-HCI-HF

digestion. The measured soil phys.~ochemical properties for each treatment are shown in

Table 1.
Table 1. Physicochemical p: o arues of soils
. lreatment
Properties o . . o
Control Sepiolite Superphosphate  Biochar Joint application
Particle Clay (<0.002 mm) 31.70 + 1.46 27.70 £ 1.62 31.40+2.46 30.30 £+ 2.89 29.80 + 1.56
Size (%) Silt (0.002~0.05 mm) 36.90 + 1.25 35.50 + 1.88 37.90+1.17 37.20+1.15 37.90+1.73
Sand (>0.05 mm) 31.40 +1.85 36.80 + 1.19 30.70 £ 1.31 32.50 +1.15 32.30 £ 2.1
pH 7.31+0.04 8.21+0.03 6.88 + 0.04 7.87+£0.05 7.52 +£0.03
EC (ms-cm'1) 1.61+0.04 1.52 £ 0.04 1.84 £ 0.06 1.69 £ 0.06 1.78 £ 0.05
Soil organic carbon (g-kg™) 24.45 +1.31 22.81+0.94 25.69 + 1.32 34.74 + 1.67 31.27 £+ 1.48
Saturated hydraulic conductivity (cm-h'w) 1.63 £ 0.04 1.45 £ 0.06 1.68 £ 0.04 1.42+0.03 1.49 £ 0.05
Field capacity (cm*-cm™) 28.16 + 1.52 31.13+1.26 27.11+1.14 34.19 + 1.87 32.24 +1.54
Total Fe (gkg™) 22.56 +1.50 23.43+1.67 2512+ 1.92 23.33+1.14 24.69 + 1.39
Total Mn (mg-kg'1) 958.34 £ 22.13 879.45 £26.47 923.45 £+ 19.86 887.57 + 27.45 92545 + 25.17
Total Al (mg-kg’w) 1874.57 + 62.81 1782.31+35.22 1832.12+70.08 1833.12+68.44 1851.23 +46.14
Total Cd (mg-kg™) 2.02+0.08 1.89+0.09 1.86+0.12 1.93+0.11 1.97£0.15
Available Cd (mg-kg™") 1.31+0.06 - - - -

2.3 Experimental design



The test period was from May 18, 2020 to April 9, 2021. Treatments were established as
follows: (i) control (no amendment); (ii) sepiolite; (iii) superphosphate; (iv) biochar; and, (v)
joint application. The application rate of amendment was 2% by weight (for the joint
application group, the dosage of the 1:1 mixture was also set as 2%). The size of each
test plot was 1 x 1 m with a planting density of 25 plants/m?. The amendments were
applied on May 8, 2020, and manually mixed into the surface soil layer (0-20 cm). All
treatments were conducted in triplicate (n=3). In order to better reveal the characteristics
of soil Cd bioavailability corresponding to the nodes of each aicwth stage of rice, the
sampling interval of soil and rice samples was set at 25 u vith the experimental period
divided into the growth period (18 may 2020 - 15 Ortuoer 2020) and the non-growth
period (November 10, 2020 - April 9, 2021), with raw.-al freeze-thaw event occurring

during the latter one (Figure 1).

The rice variety was "Liaojing 433", whi.* was transplanted on May 16, 2021, and
harvested on October 7, 2021. A ba=ai NPK (N: P,0s: K0 of 11:6:8) fertilizer was
applied at a rate of 500 kg/ha to u.~ soil one week before transplanting (Sui et al., 2020).
Another 200 kg/ha tillering ferti.7er was applied 15 days after transplanting was
completed. At sampling ~.vony, soil samples were collected manually using a soil drill
(sampling depth 0-20 cn.\. Due to spatial heterogeneity, five soil samples were collected

from each plot in an "S-type" pattern (Cappai et al., 2017).

2.4 Sample analysis

Soil samples were air-dried and the particle size distribution determined by the wet sieve
method (Elliott, 1986) and the soil mean weight diameter (MWD) calculated. Available Cd
was extracted with diethylenetriaminepentaacetic acid (DTPA) by shaking at constant

temperature for 2 h (US EPA, 2012) before Cd analysis by ICP-MS. Soil available N was



measured in a closed vessel by the alkali-hydrolysis and diffusion method (Zeng et al.,
2018). Available P was determined following extraction with NaHCO3; solution at 25 °C +
1 °C, and determined by the molybdenum antimony-ascorbic acid colorimetric method
(Pansu and Gautheyrou, 2006). Plants sampled from each area were separated into root,
shoot, leaf and grain organs, which were washed and dried at 65 °C for 96 h (Lei et al.,
2017). The dried plant materials were digested with a mixture of HNO3; and HCIO4 (2:1,

v/v) before Cd analysis by ICP-MS.

2.5 Statistical analyses
The translocation factor (TF), distribution factor (DF) ar.& ine bio-concentration factor

(BCF) were calculated as follows (Antoniadis et ai.. 2(17):

TForganl—organZ = CorganZ/Corganl (1)
DForgan = argan/Ttotal (2)
BCForgan = Corgan/Csoil (3)

Where Corgant is the Cd conceru tion in the root, Corgan2 represents a particular organ
aboveground (i.e. rice shont, le af, and grain), and Csj is the Cd content of the soil. Torgan
is the accumulation c® C! in all aboveground organs, and the Ty, represents total Cd in

the plant.

Statistical analyses and data visualization were conducted using IBM SPSS 19.0 and
Sigmaplot 12.5 software. The Fisher LSD test was used to identify differences in the soil

and plants indicators among treatments (significance level p < .05).

3 Results and discussion

3.1 Soil characteristics



The untreated control soil (control) had an average pH value of 7.33 during the initial
growth period, whereas the pH values for the various treated soils varied according to the
amendments used (Figure 2a). The clay amendment led to an increase in soil pH (Brady
and Weil, 2014) and dissolution of biochar ash content also increased soil pH (Kwon et
al., 2020). Conversely, superphosphate reduced the soil pH (from 6.95 to 6.57), as this
material is prepared from sulfuric acid (Wang et al., 2020c; Wu et al., 2019) and leads to

the formation and accumulation of soil organic acids (Wang et al., 2013).

From the initial period (0 d), the superphosphate and joint aplication treatments
increased the amount of soluble salts in the soil, with € ect ical conductivity (EC) values
increasing by 23.49% and 19.26%, respectively, reiai’ve to the control. Superphosphate

is rich in Ca?*, SO,%, H,PO, and other soluble ior.s, wiich enhance EC values (Xia et al.,

2019). The ash content of biochar provides ~lkaline carbonate, silica, organic and
inorganic nitrogen (Nigussie et al., 2012,, it also has strong adsorption and cation
exchange capacities, which inhibit *!.> rclease of soil salts (Younis et al., 2020). Similarly,
the high adsorption capacity of the cepiolite clay would also have prevented the release
of salts (Neaman and Singei, 2c94). Therefore, although the EC values in the biochar
and sepiolite treatments we.e slightly higher than the control, they remained relatively
stable. It is noticeable the t in mid plant growth, the soil EC values decreased and
fluctuated in the control and superphosphate treatment. This relates to the rice plants
requiring irrigation and subsequent infiltration and evaporation of soil pore water leading

to salt migration (Phogat et al., 2020; Yin et al., 2021).



Soil electrical conductivity (ms/cm)

Soil mean weight diameter (mm)

Figure 2. Variation in soil physicochemical properties - error bars show standard error. (a) soil pH
in the growth period; (b) soil pH in the non-growth period; (c) soil electrical conductivity (EC) in
the growth period; (d) soil EC in the non-growth period; (e) soil mean weight diameter (MWD) in
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the growth period; (f) soil MWD in the non-growth period

Soil aggregation increased after the addition of the immobilization agents to the soil. For

instance, the MWD value for the control was 1.087 mm in the initial growth period, which

was 26.41%, 16.56% and 12.69% higher for the sepiolite, biochar and the joint



application treatments, respectively. With progression of the growth period, the MWD
values displayed a "U" trend. The increased soil MWD relates to biochar derived
microbial binding and sepiolite having a micro-fibrous shape and high specific surface

area, thus both promoting the aggregation of soil particles (Neaman and Singer, 2004).

3.2 Potential “bioavailability” of Cd as determined by chemical extraction

For the control treatment, the average DTPA extractable-Cd content was 1.32 mg/kg in
the initial growth period (Figure 3a). In comparison, extracta'le-Cd for the sepiolite,
superphosphate, biochar and the joint application treatments lecreased by 43.6%,
33.3%, 39.6% and 42.6%, respectively. Sepiolite elexai.z soil alkalinity and surface
charge negativity, forming precipitation products a. hvJroxides and carbonates, thus
reducing bioavailability (Chen et al., 2020; Yu et ¢l., 2016). As also found by Liang et al.
(2016, sepiolite amendment triggered 2 re.'ucion in the exchangeable Cd geochemical
fraction and an increase in the resicual fori . Biochar contains various functional groups
including hydroxyl, carboxyl and cz rt o :yl, which immobilize Cd via surface complexation
and other mechanisms (Ahman ot al., 2014). Moreover, biochar reduces dissociation of
Cd via electrostatic attraction ¢ ving to its negative charge (O'Connor et al., 2018). In
addition, the porous carl. an natrix of biochar serves well as a habitat for microorganisms
including bacteria and f..1gi to colonize, where microorganisms immobilized onto biochar
may also promote the biosorption and immobilization of heavy metals (Cao et al., 2011).
Superphosphate amendment leads to the formation of cadmium phosphate via surface
polymerization or fixation mechanisms according to Da Rocha et al. (2002. Therefore, the
treatments reduced Cd bioavailability to varying degrees. The effects of sepiolite and the

joint application groups were significant.



Apart from this, the average DTPA extractable-Cd content of the control treatment
showed first a decreasing and then increasing trend accompanied by plant growth. This
trend relates to soluble Cd migrating downward through soil pores under irrigation during
the initial period (Kakeh et al., 2020), while evaporation mainly occurred during the
middle and late period (July and August) (Figure 1b). The result further verifies that the
hydrological cycle of irrigated paddy fields affects soluble metal ion levels (Zhang et al.,

2020a).
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The FTIR spectra demonstrates that biochar contained abundant functional groups
(Figure S1). A band was identified at 1684 cm™, which corresponds to the -COOH
stretching vibration. The band at 1365 cm™” represents the stretching vibration of C-OH
of the alcohol and carboxylic acid groups. In addition, the stretching vibration at 1126
cm™ indicates the superposition of the ester and ether groups. The abundant
oxygen-containing functional groups may have contributed to field immobilization
performances. As for the sepiolite, the band at 3772 cm rev2als the stretching vibration
peak of octahedral Mg-OH, which will also promote the rni.2~'exation of Cd. Similarly, the
XRD pattern and elemental compositions of immobili: ed materials are shown in Figure

S28&S3.

3.3 Plant bioavailability: Cd-in rice tiss.=s

Overall, root Cd concentrations were lowc - among the treatments than the control (Figure
4). This was most notable for the s li2 treatment, being 42.4%, 21.1%, 11.3% and 5.3%
lower than the control, superphr spi.ate, biochar and joint application treatments,
respectively. The mineral coi."nusition of sepiolite would have increased the
carbonate-bound and re siac al fractions of soil Cd, which is associated with lower Cd
uptake (Liang et al., 201+ ). Surface complexation with hydroxyls at Si-OH and Mg-OH
sites may have also contributed to the high Cd immobilization capacity of the clay mineral

(Sheikhhosseini et al., 2013).

The average Cd concentration within the rice grains was 0.56 mg/kg in the control group.
Whereas this value decreased by 21.43% ~ 42.78% in the four immobilization treatments
(decreased most for the joint application treatment), indicating a synergistic effect of
biochar and superphosphate application. It may be attributed to the fact that 1) the

porous structure of biochar favors superphosphate adsorption, thus diminishing the



leaching loss of phosphate accounting for Cd precipitation (Herath et al., 2020), and that
2) phosphate reduced Cd stress within the plants (Dang et al., 2016). The joint
application of biochar and calcium superphosphate also increased soil pH as other single
treatments did, contributing to decreased bioavailability of Cd and the enrichment of

metals in rice as compared with the control group (Moragues-Saitua et al., 2017).

It's noteworthy that although Cd content in grain decreased after using soil amendments,
it still exceeded the limit standard (0.2 mg/kg) of the Chines~ standard (GB 2762-2017). It
could be that the amendments applied at 2% may not be cui*<ient to fully come into

interact with labile Cd. The alkaline nature and fine tex ure of soil (Table 1) also hindered
the effectiveness of immobilization, as evidenced ky previous meta-analyses (Chen et al.,

2018; Hu et al., 2020).
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Figure 4. Accumulation of Cd in various plant organs (a) Cd cor~c~*. ations in roots and shoots; (b)
Cd concentrations in leaves and grains

The TF, DF and BCF values for various plant organs \ 'ere calculated (Table 2). Among
the five treatments, the sepiolite and the joint % alication treatments showed a strong
advantage, with the TF of Cd in the shor* heng 16.3% and 14.6% lower than the control,
respectively. The TF of Cd in the grains w s also lowest for the joint application

treatment.

All four of the treatments redured Cd accumulation within the rice grains. The average
DF value for grain Cd was 0.0c2 for the control treatment, which decreased by 16.2%,
8.1%, 11.3% and 32.2% for .he sepiolite, superphosphate, biochar and joint application
treatments, respectively,. The BCF values for Cd in shoot, leaf and grain, reduced by
varying degrees following the addition of the immobilized agents. Chen et al. (2020
suggested that sepiolite is an efficient soil amendment to remediate Cd contaminated
acid soils. Biochar provides not only causes a reduction of Cd uptake levels but also
offers essential nutrients to improve crop yields (Bolan et al., 2013; EI-Naggar et al.,

2020).

Table 2. Translocation and bio-concentration of Cd in various organs of plants (mean + standard
deviation).



Treatments

Index Plant organ
Control Sepiolite Superphosphate  Biochar Joint application
Shoot 0.616 £ 0.034a 0.516 £ 0.022c 0.575 £ 0.031b  0.543 £ 0.025b  0.526 + 0.018c
I;i?g:"(‘:f;')on Leaf 0.258+£0.012a 0246+ 0.015a 0253400152 0248+ 00132 0.244 % 0.017a
Grain 0.069 £+ 0.007a 0.042 +£ 0.005b  0.047 £ 0.007b  0.049 = 0.009b  0.038 + 0.005b
Shoot 0.698 £ 0.038a 0.651 + 0.025b  0.637 + 0.037c 0.675 £ 0.032ab  0.667 + 0.029ab
Distribution Factor (DF) Leaf 0.241 £ 0.021c  0.298 +£ 0.016ab  0.306 £ 0.013a  0.270 £ 0.015b  0.291 + 0.018ab
Grain 0.062 + 0.008a 0.052 +£ 0.008b  0.057 + 0.006ab  0.055 £ 0.007ab  0.042 + 0.006c
Shoot 1.627 £ 0.065a 1.103 + 0.044c 1.504 = 0.058b 1.395 + 0.056¢ 1.183 £ 0.043c
E‘a‘:tf)‘;"(cBeC“;;atb“ Leaf 0.593+0.019a 0.582+0.019a 0.601 +0.021a  0.595% 0.018a  0.588 % 0.027a
Grain 0.154 £ 0.012a  0.102 % 0.008c 0.131 £ 0.007b  0.118 + 0.008c 0.092 + 0.009c

Note: Different lower-case letters indicate significant differences o translocation and

bio-concentration of Cd in various organs (p < 0.05).

3.4 Soil nutrients

Biochar and superphosphate treatments increased the <soil available nitrogen and

phosphorus contents (Figure 5). Available nitroger. g, ~dually decreased throughout the

plant growth period, reflecting its role as an r.s_=r.iial element. Average available nitrogen

for the superphosphate, biochar and control treatments increased by 16.2%, 36.9% and

43.8%, respectively, compared to the ~ontrol. Biochar applications have been reported to

stimulate microbial growth and irmc*.iize plant-available nitrogen (Deenik et al., 2010).

Biochars with high H/C ratios .nay increase N mineralization rates (Liang et al., 2021,

Pereira et al., 2015). Meanw™'2, an increase in available nitrogen in response to

superphosphate applicction relates to its effect on soil acidity-alkalinity and
oxidation-reduction potential (ORP), which regulates nitrogen’s state (Curtin et al., 2019).
The data supports the hypothesis that N mineralization increases in response to

P-fertilization.
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Figure 5. Variation characteristics of soi! n.*rient content (a) Available N in growth period; (b)
Available N in non-growth period; (c) 4 ai uble P in growth period; (d) Available P in non-growth
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During the initial growth r~nc 2, the average available phosphorus content was 61.37
mg/kg for the control tre>tment, which increased by 11.2%, 49.1%, 18.1% and 31.1% for
sepiolite, superphosphate, biochar and the joint application treatments, respectively.
Although available phosphorus gradually decreased for all treatments, the
superphosphate, joint application and biochar treatments showed the highest levels
overall. The available P content in biochar was as high as 21.7 mg/kg, acting as a P
source in soil (Gao et al., 2019). In addition, activities of microorganisms that can secrete
phosphatase were stimulated by biochar, enhancing the decomposition and

mineralization of organic phosphorus (Cleveland and Liptzin, 2007). Meanwhile, sufficient



nitrogen supply would increase the microbial P demand and contribute to a net increase
in available P (Makoto et al., 2011). It is unsurprising that the superphosphate application

elevated available P and enhanced the soil nutrient supply.

3.5 Biomass yield

At the mature stage, average root weights increased by 3.1%, 6.6%, 12.5% and 18.8%
for the sepiolite, superphosphate, biochar and joint application treatments compared to
the control, respectively (Table 3). Shoot weights were high. st for plants under the
superphosphate and joint application treatments, which in~rez.sed by 13.1% and 10.6%,
respectively. This finding likely owes to the biochar eliec: un soil water holding capacity
and other hydrological properties (Githinji, 2014) v.hile the P-fertilizer provided sufficient
nutrient supply to promote root development (Zr.eng et al., 2016). P-fertilizer also
enhances carbohydrate transport withir pianie which relates to increased biomass (da

Costa et al., 2015).

It is noteworthy that the number of ii e grains from plants from the joint application
treatment was significantly hig'ier *han that of other treatments. This is consistent with the
findings of Carneiro et al. (202, who reported synergistic effects for the application of
biochar and P-fertilize. v.>i_h promotes N, P, K and other element absorption by plants.

Table 3. Effects of different treatments on biomass of organs in rice plants (mean * standard
deviation, t/ha)

Heading period Mature period
Treatment
Root Shoot Leaf Root Shoot Leaf Grain
Control et 413+ 025 90E 2884015 6.35+0.38c 2.86+0.13c 7.46 % 0.35¢
. 2.14 + 2.09 = 3.11 +
Sepiolite 0.15¢ 4.17 £ 0.27c 0.12¢ 2.97 £0.17c  6.19 £ 0.34c 0.17ab 7.37 £ 0.23c
Superphosphat  2.23 + 232+ 8.06 +
e 012b 4,57 + 0.15a 0.18a 3.07+£0.11b 7.18+0.28a 3.05 £ 0.15b 0.37ab
) 245 + 2,27 £ 3.24
Biochar 0.14a 4.32 £0.21b 0.14b 0.16ab 6.73 +£0.34b 3.12+0.19a 7.77 £0.26b
Joint 2.29 + 4.43 £ 2.39 7.02 £
application 0.12b 0.18ab +.017a 342015 oy 3.21£0.17a  8.34 £0.29a

Note: Different lower-case letters indicate significant differences of organ biomass (p < 0.05).

3.6 Effect of freeze-thaw aging



3.6.1 Soil properties

After the plant growth period had ended, the treatments were exposed freeze-thaw
cycles during the winter season. The soil pH for this period is shown in Figure 2b,
showing that the pH of the superphosphate treated soil reduced from 6.61 to 6.24,
thereby increasing the risk of Cd remobilization. Superphosphate carries free acid, and
the freeze-thaw aging would have driven soil particle disintegration and the release of
acidic substances (Pegoraro et al., 2018). Conversely, biocnar enhanced the soil
alkalinity over time owing to the alkaline ash component t cin¢ gradually released as
freeze-thaw cycles broke down the biochar structure /.~ loa Rosa et al., 2018). Therefore,
the joint application provided a buffering effect witt: le. s change in soil pH observed than
other treatments. The pH of the sepiolite treat~.~nt showed a decreasing trend, which is
attributed to the hydrolysate of CaO cont~~u.rq CO, during freeze-thaw aging, resulting in

the formation of carbonates and reducea ~oil pH (Zhang et al., 2019).

Recorded electrical conductivity (EC' \ alues among five treatments generally increased,
gradually, during the aging peric (Figure 2d). The sepiolite and biochar treatments
decreased by 20.2% and 9.1%. relative to the control group, respectively. Decreasing EC
in biochar treated soi's i. att ibuted to frost heave breaking down the biochar structure,
thus, increasing its spec’.ic surface area and ion adsorption sites, which would
suppresses the concentration of free ions (Cui et al., 2021; Wang et al., 2020b). In
addition, sepiolite holds colloidal properties, which facilitate soil particle aggregation and,
thus, effectively resists the freeze-thaw aging impact on salt ion release (Moreno-Maroto
et al., 2017). The EC values for the superphosphate treatment increased relative to the
control group. Although freeze-thaw cycles led to phosphate dissolution, which binds with
metals through complexation (Zhang et al., 2020b), acid radicals released from soil

particles may adversely affect Cd leaching (Zhou et al., 2021).



The soil MWD values showed a decreasing trend with the control group MWD being
0.912 mm at the end of the aging period (Figure 2f). Biochar and sepiolite inhibited the
fragmentation of soil particles with MWD values for the sepiolite, biochar and joint
application treatments being 26.0%, 21.8% and 18.6% lower than the control group,
respectively. Thus may be due to soil particles released from aggregate breakdown
re-polymerizing as medium-sized aggregates with the presence of biochar (Hagner et al.,
2016). The results also show the advantage of sepiolite on water-stable soil aggregates

as discussed by Sheikhhosseini et al. (2014.

3.6.2 Cd remobilization

Following the freeze-thaw aging period, DTPA-exu 2ct able Cd in the control soll
increased by 16.9% relative to the initial pericd r or the sepiolite, superphosphate,
biochar and joint application treatments, it ncicased by 10.9%, 14.4%, 7.6% and 5.0%,
respectively. This is because freeze -thaw aging would have broken down large-size soil
particles, resulting in the release o € xi..nangeable Cd (Hou et al., 2021). Compared with
fresh biochar, aging affects thr . ~rticle size, pore diameter and its adsorption capacity.
Previous studies have sugnesi :d that natural field aging in cold regions can cause the
structure of rice husk hic ~hz: to collapse (Rafiq et al., 2020). Atmospheric contact during
natural aging, on the ot..er hand, would lead to the introduction of additional
oxygen-containing functional groups on the biochar surface, which enhance phosphate
fixation and, therefore, Cd stabilization increased in the joint application treated soil
(Huang et al., 2020b; Zhao et al., 2020). For the sepiolite treatment, the immobilization
effect of Cd attenuated with freeze-thaw aging. Nevertheless, the mineral components
promoted the conversion of Cd from exchangeable to carbonate-bound and residual

fractions, thus limiting the aging effects (Zhu et al., 2010).



3.6.3 Nutrient availability

Available nitrogen content in the biochar and superphosphate treated soils improved
compared to other treatments (Figure 5b). Interestingly, the trend showed peaks at the
beginning and end of the aging period. The reason may be that some small molecular
carbon particles were wrapped in porous structure, and freeze-thaw cycles accelerated
the mineralization and decomposition of biochar derived dissolved organic carbon (DOC)
and generated available nitrogen (Juan et al., 2020). Mean vhile, low temperatures led to
the dissociation of microbial cells, releasing inorganic nitrc.ger and other available
elements (Gavrichkova et al., 2020). As the freezing rerioc passes, the soil was in a
stable freezing state, and the replenishment effect of < vailable nitrogen was weakened.
Whereas the soil denitrifying enzyme still mair:cins high activity in the coldest month
(Pelletier et al., 1999), resulting in a decr~ac’ng trend of available nitrogen from 5/12/20
to 24/1/21. Notably, the increase in soil te mperature in spring enhanced microbial activity
and accelerated the rate of soil nitr.. ~n mineralization (Liu et al., 2021), therefore the
content of soil available nitroger showed an increasing trend from 24/1/21 to 15/3/21.
Overall, the synergistic effec. 21 {he biochar and superphosphate treatment effectively
regulated the carbon-nit oge n cycle with replenished soil available nitrogen content. In
contrast, the effect of free ze-thaw aging on soil available phosphorus was relatively weak.
Only in the superphosphate treatment was a noticeable effect seen with a variation of
20.08 mg/kg, which indicated that available phosphorus stored in soil aggregates

reactivated with aging (Cheng et al., 2018).

4 Conclusions
The results revealed that joint application of biochar and superphosphate enhanced both

Cd immobilization and nutrient supply in the plant growth period. Importantly, joint



application was more effective in inhibiting Cd accumulation in rice organs and increasing
the crop yield compared with biochar and superphosphate applications alone. The
sepiolite treatment effectively reduced DTPA-extractable Cd, however, the ability to resist
Cd enrichment and promote nutrient assimilation was evidently lacking. Additionally,
freeze-thaw aging during the winter non-growth period damaged soil aggregates and
remobilized soil Cd. However, biochar treatments promoted the formation of
medium-sized soil agglomerates. Moreover, the fragmentation of biochar by freeze-thaw
cycles created more sorption sites and introduced addition=! tuctional groups with
binding capacity, which inhibited Cd remobilization. Thr.ielare, we conclude that joint
application of biochar and superphosphate suppres<e. the transfer of Cd in the soil-plant
system effectively under freeze-thaw aging with long *erm effectiveness. This study
confirmed that although clay mineral, bioche: o nr’ phosphate fertilizer alone immobilized
Cd during the experimental period, the ‘ h-.d obstacles under a natural freeze-thaw
process. Future works may investiga.> field aging phenomena and mechanisms of
various amendments in different rag ~"1s where other natural events such as wet-dry
cycling dominated the aging g 2cess, and test whether this joint application treatment still

remained effective.
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Highlights

¢ Field trial was conducted in Cd contaminated paddy under freeze-thaw process.
e Freeze-thaw aging in non-growth period re-mobilized cadmium in soil.
e Sepiolite, biochar and superphosphate immobilized Cd successfully during aging.

¢ Joint application of biochar and superphosphate revealed better performance.



