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Abstract 14 

Mapping soil contamination enables the delineation of areas where protection measures 15 

are needed. Traditional soil sampling on a grid pattern followed by chemical analysis and 16 

geostatistical interpolation methods (GIMs), such as Kriging interpolation, can be costly, 17 

slow and not well-suited to highly heterogeneous soil environments. Here we propose a 18 

novel method to map soil contamination by combining high-resolution aerial imaging 19 

(HRAI) with machine learning algorithms. To support model establishment and validation, 20 

1068 soil samples were collected from an arsenic (As) contaminated area in Zhongxiang, 21 

Hubei province, China. The average arsenic concentration was 39.88 mg/kg (SD = 213.70 22 

mg/kg), with individual sample points determined as low risk (66.9%), medium risk (29.4%), 23 

or high risk (3.7%), respectively. Then, identified features were extracted from a HRAI 24 

image of the study area. Four machine learning algorithms were developed to predict As 25 

risk levels, including (i) support vector machine (SVM), (ii) multi-layer perceptron (MLP), 26 

(iii) random forest (RF), and (iii) extreme random forest (ERF). Among these, we found 27 

that the ERF algorithm performed best overall and that its prediction performance was 28 

generally better than that of traditional Kriging interpolation. The accuracy of ERF in test 29 

area 1 reached 0.87, performing better than RF (0.81), MLP (0.78) and SVM (0.77). The 30 
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F1-score of ERF for discerning high-risk points in test area 1 was as high as 0.8. The 31 

complexity of the distribution of points with different risk levels was a decisive factor in 32 

model prediction ability. Identified features in the study area associated with fertilizer 33 

factories had the most important contribution to the ERF model. This study demonstrates 34 

that HRAI combined with machine learning has good potential to predict As soil risk levels. 35 

Keywords: Arsenic contamination; soil pollution; HRAI; remote sensing; machine learning 36 

Capsule:  Use drone image recognition and machine learning to map soil pollution 37 

distribution at an arsenic-contaminated agricultural field 38 

1 Introduction 39 

Arsenic (As) is a toxic heavy metalloid (Hughes, 2002) that is often found in soil 40 

environments originating from naturally occurring lithogenic processes or stemming from 41 

anthropogenic activities such as mining and fertilizer manufacturing (González-Fernández 42 

et al., 2017; Kříbek et al., 2010; Li et al., 2017). When As is enriched in agricultural soils, 43 

it not only threatens food security due to its phytotoxicity, but also endangers food safety 44 

due to its bioaccumulation in crops (Cui et al., 2018; Rauf et al., 2015). Moreover, As can 45 

transport from soil to groundwater or surface watercourses, thus contaminating drinking 46 

water supplies and the wider natural environment (Li et al., 2017). Therefore, elevated soil 47 

As hinders the achievement of sustainable agriculture (Hou et al., 2020). 48 

Mapping soil As is crucial to provide policy-makers with evidence-based scientific support 49 

for developing adequate soil protection measures (Hou and Ok, 2019). The effectiveness 50 

and sustainability of remediation strategies that are applied to decontaminate affected 51 

soils, such as immobilization, soil washing and phytoremediation also rely on accurate 52 

estimations of soil As distributions (Beiyuan et al., 2017; Hou, 2019; Li et al., 2017; Wei et 53 

al., 2019).  54 

Conventional soil mapping involves physically gathering soil samples in a grid pattern and 55 

transporting the soil to a laboratory for further chemical analysis (Martinez-Villegas et al., 56 

2018; Signes-Pastor et al., 2016). After determining the soil As levels, geostatistical 57 

interpolation methods (GIMs), such as kriging interpolation, could be applied in order to 58 

predict contaminant concentrations at unsampled points (Hou et al., 2017). This enables 59 
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risk assessments to be performed to identify and delineate areas associated with 60 

environmental risks that need to be properly managed.   61 

The establishment of traditional GIMs mainly bases on the first law of geography, namely 62 

spatial autocorrelation, which assumes that the attribute values of near observations are 63 

more related than that of distant observations (Dubin, 1992). In addition, GIMs were 64 

initially developed to calculate the distribution of minerals, which are much more abundant 65 

than pollutants in soil. Issues arise with the conventional approach because As levels are 66 

typically trace and highly heterogeneous, therefore, high density sampling grid patterns 67 

are required to achieve adequate mapping accuracy (Liu et al., 2016). This is often not 68 

economically viable, especially when large spatial areas need to be covered, i.e., regional 69 

soil mapping. Consequently, traditional GIMs are not well-suited to mapping highly 70 

heterogeneous soil sample data (Zhang et al., 2018a). 71 

Therefore, the development of detection technologies that enable rapid low-cost high-72 

resolution mapping of soil contaminants is highly advantageous for soil mapping. For this 73 

reason, in situ sensing technologies, such as portable handheld X-ray fluorescence (XRF) 74 

and remote satellite-based visible-infrared spectroscopy (VIRS), have been the subject of 75 

increased research attention (Al Maliki et al., 2017; Chakraborty et al., 2017). Until now, 76 

however, predicting soil As levels based on High Resolution Aerial Imaging (HRAI) has 77 

not been reported.  78 

HRAI is a technique that involves the use of aircraft mounted cameras to capture large 79 

area images with high spatial resolution, typically 0.1~0.5 m. The United Kingdom, for 80 

example, has been capturing HRAI images for more than 15 years at sites that are up to 81 

hundreds of km2 in size (Defra, 2020).  82 

For the current study, we hypothesized that various features related to soil As levels would 83 

be embedded within HRAI images. Firstly, it is found that RGB has the potential to present 84 

spectral information in previous studies (Smits, 1999). The concentration of arsenic 85 

exhibits significant correlations with the reflectance at several wavelengths (e.g., ~428 nm 86 

and ~1290 nm) due to the interactions between As and soil components such as iron 87 

oxides and organic matters (Chakraborty et al., 2017). The values of RGB and the indices 88 

derived from them may have the ability to predict soil arsenic contamination. Secondly, 89 

the locations of pollution sources, such as fertilizer factories, are highly significant on 90 
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contaminant distributions (Fayiga and Saha, 2016; Zhang et al., 2018b). The effects of 91 

soil contaminants on vegetation may also mean that certain image features can potentially 92 

be extracted for contaminant prediction (Shi et al., 2014; Wu et al., 2007). Consequently, 93 

HRAI images may contain valuable information that can be extracted to enable the 94 

prediction of As concentrations in soil. The extracted information, however, would be in a 95 

complicated form, thus requiring the use of machine learning algorisms to make accurate 96 

predictions of soil contaminant levels. 97 

This study develops a novel modelling approach to predict soil As levels from HRAI images. 98 

The main objectives of this study are: 1) to develop reliable approaches to quantify the 99 

required features and extract them from HRAI; 2) to construct models based on different 100 

machine learning algorithms and compare their prediction performance; 3) to explore the 101 

factors influencing the model performance; and 4) to illustrate its feasibility by comparing 102 

the performance of this method to traditional GIMs.  103 

2 Methodology 104 

An overview of the three-layer model that was developed for predicting soil As risk levels 105 

is exhibited in Fig. 1. In the first layer, the detailed soil contamination information and the 106 

HRAI were obtained. In the second layer, the image was decomposed into pixels, and the 107 

features of pixels representing the sample points were extracted. The features could be 108 

classified into three types: 1) the value of R, G, B and the index composed by them; 2) the 109 

distances and gradient of pixels to the surface objective, including vegetation, rivers, and 110 

factories; 3) the distance and gradient of pixels to the specific factory function areas, such 111 

as industrial waste storage areas. Arsenic contamination risk levels of the sampling points 112 

were identified as dependent variables. In the third layer, several models, including 113 

random forest (RF), extreme random forest (ERF), support vector machines (SVM) and 114 

multi-layer perceptron (MLP), have been trained with the obtained features, and the model 115 

performance was evaluated. The methods involved in each aspect are presented in the 116 

sub-sections below. 117 

 118 
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 119 

Fig. 1. Schematic diagram of the proposed three-layer model developed for predicting soil 120 
As risk levels 121 
 122 

2.1 Input 123 

2.1.1 Soil data 124 

The study area is located in Zhongxiang, Hubei in southern China (Fig. 2). The climate is 125 

subtropical monsoon with a mean annual temperature of 15.9 °C and a mean annual 126 

precipitation of 942.9 mm (Guo et al., 2010). The mean annual wind speed is 3.3 m/s and 127 

the prevailing wind direction is South to North throughout the year. Duing the pre-Sinian 128 

system (2.1 billion years ago), this area is the ancient sea. At the end of the Silurian system 129 

(about 400 million years ago), it was uplifted into land due to the Caledonian movement 130 

and became a part of Dahong Mountain. In the Cenozoic, the Himalayan movement led 131 

to differential ups and downs and fractures, resulting in the formation of a Huaiyangshan-132 

shaped structural system and the Neo-Cathaysia structural system, with the geological 133 

characteristics of an anticline and small faults in folds. The stratum is fully exposed from 134 

the Proterozoic to the Cenozoic, and only the Jurassic of the Mesozoic is missing. Its 135 

composition is mainly Quaternary clay, yellow-green shale slate, quartzite, dolomite, 136 
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purple sand shale, variegated sandstone, etc., and there are Quaternary valley alluvial 137 

and lacustrine layers. The maximum thickness is 7164～10266 m. The main parent 138 

materials are limestone, shale, red sandstone, apatite, and conglomerate (Figure S1). 139 

Among them, paddy soil and fluvo-aquic soil in the plain accounted for 96.18% of the total 140 

cultivated land area, while the soil layer of the mountainous hills accounted only for about 141 

3.82% of the cultivated land area in the city.   142 

The main agricultural produce of this region is rice, along with wheat, rapeseed and corn. 143 

Natural phosphate deposits are locally abundant, accounting for one-sixth of phosphate 144 

reserves in China. The local phosphorus fertilizer manufacturing output is ~6 million metric 145 

tons per year. Therefore, the phosphate chemical factories have been established since 146 

1958 and have experienced rapid development since 2005. The existing phosphate 147 

mining capacity is 6 million t/year, and the total production capacity of compound fertilizer 148 

is 7 million tons (Chen, 2011). Both factories (Figure 2) in the investigated area are 149 

phosphate chemical factories. Factory 1 was established in 2002 with an annual 150 

production capacity of 3.6 million tons. The annual phosphate mining capacity of Factory 151 

2 was 500 thousand tons. Intensive phosphate mining and production activities have 152 

caused serious heavy metal contamination in soil and water, posing potential threats to 153 

both human health and the environment. 154 

  155 
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 156 

Fig. 2. Study area  157 

A total of 1068 agricultural soil samples were collected. Sample locations were based on 158 

an 80 m regular grid, which was reduced to 40 m around two phosphate fertilizer factories 159 

(Fig. 2). Sample locations were confirmed by GPS in the field. At each sampling location, 160 

three to five surface soil samples were combined to provide one representative aggregate 161 

sample. After removing large debris and stones, the obtained samples were air-dried for 162 

one week at ambient temperature and then sieved (< 2 mm). The processed samples 163 

were stored in amber glass jars in a temperature-controlled environment (4 °C) prior to 164 

analysis. 165 

Soil pH was determined at a solid-to-liquid ratio of 1:5 by a pH meter based on ISO 166 

10390:2005. Soil As concentrations were analysed in accordance with China Standard HJ 167 

766-2015. Briefly, samples were ground and sieved (< 0.25 mm). After that, 0.2 g soil was 168 

microwave digested in a mixed acid solution of 1 ml hydrofluoric acid (HF), 4 ml nitric acid 169 

(HNO3), 1 ml hydrochloric acid (HCl), and 1 ml hydrogen peroxide (H2O2). The obtained 170 

solution was analysed for As by ICP-MS and the soil concentration was calculated. The 171 

As concentrations and soil pH are shown in Table 1. The standard reference materials 172 

and blank samples were set to verify the precision and accuracy of the chemical analyses 173 
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in this study. The recovery of standard reference satisfied the criterion set by China 174 

Standard HJ 766-2015, and detailed information is presented in Table S1 (Supplementary 175 

Material).  176 

Table 1. Soil As and pH data based on the analysis of 1068 soil samples 177 
 As (mg/kg) pH 

Mean 39.88 6.92 
Standard deviation of the mean 213.70 0.89 
Min 0.00 4.37 
25th percentile 16.00 6.28 
Median 20.10 7.34 
75th percentile 25.50 7.58 
Max 6402.00 10.23 

 178 

2.1.2 Soil risk level 179 

Risk assessment was performed according to the Chinese soil environmental quality risk 180 

control standard (GB 15618-2018). According to this standard, if an appropriate risk 181 

screening value (RSV) threshold is not exceeded, then no risk management measures 182 

are required (i.e., low risk); if the RSV is exceeded but the risk intervention value (RIV) 183 

threshold is not exceeded then risk management and control measures are required, for 184 

example crop adjustment (i.e., medium risk); if the RIV threshold is exceeded, then soil 185 

remediation is required (i.e., high risk). The RSVs and RIVs for As contaminated paddy 186 

soil, which are dependent on the soil pH level, are listed in Table 2. 187 

Table 2. Risk screening value (RSVs) and risk intervention value (RSVs) for As in paddy soils 188 
depending on the soil pH value (GB 15618-2018) 189 

Paddy soil pH level RSV (mg/kg) RIV (mg/kg) 

pH≤5.5 30 200 

5.5< pH≤6.5 30 150 

6.5< pH≤7.5 25 120 

pH≥7.5 20 100 

The average As concentration of all the soil samples in the study area was 39.88 mg/kg 190 

(Table 1), exceeding the RSV (25 mg/kg) for the average pH level (6.92), representing a 191 

medium risk. However, the standard deviation of the mean was quite large (212.91 mg/kg), 192 

signifying that there was a high level of variance in As concentrations across the study 193 

area. Figure 3 (a) and (b) indicate that both the distributions of pH level and As 194 

concentration were skew. The assessed risk level for each soil sampling point is illustrated 195 

in Figure 3. Of the 1068 sample points, most were assessed as low risk (n=714; 66.9%) 196 
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or medium risk (n=314; 29.4%), and a relatively small number were assessed as high risk 197 

(n=39; 3.7%).  198 

 199 

 200 

Fig. 3. Histogram of (a) pH, and (b) arsenic contamination, and (c) the distribution of 201 
assessed risk levels.  202 

2.2 Feature extraction 203 

A HRAI image of the study site with a spatial resolution of 0.4 m was obtained. The cloud 204 

cover was 0% when the image was obtained, and geometric correction has been 205 

conducted by Envi 10.5. The image was then matched to the geodetic coordinate system 206 

of the sampling points using ArcGIS 10.5 (Esri, UK). The image pixels were assigned 207 
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relative coordinates and red-green-blue (RGB) bands and derivative features were 208 

extracted using Python (Python Software Foundation, USA) with the Geospatial Data 209 

Abstraction Library (GDAL; Open Source Geospatial Foundation, USA). Features, such 210 

as maximum and minimum band values, quotients of two bands (e.g. G/B and B/G), and 211 

several indices were calculated, including the brightness index, redness index, and 212 

coloration index, were calculated. Band values for surrounding pixels were extracted and 213 

the mean, standard deviation, and gradients calculated.  214 

The locations of identified components in the HRAI image (e.g. rivers, vegetation and 215 

factories) were marked. Then, the distance and gradients between sampling points and 216 

labelled components were calculated through the following functions (Eq. 1-3): 217 

Distance = √(𝑥𝑖 − 𝑥𝑡)2 + (𝑦𝑖 − 𝑦𝑡)2       (1)             218 

Gradentx =
𝑥𝑖 − 𝑥𝑡

min 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
      (2) 219 

Gradienty =
𝑦𝑖 − 𝑦𝑡

min 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
       (3) 220 

where 𝑥𝑖  and 𝑦𝑖  are the coordinates of point i, 𝑥𝑡  and 𝑦𝑡  are the coordinates of an 221 

identified component, respectively. 222 

It was evident that samples collected close to the two fertilizer factories were associated 223 

with elevated risk levels (Fig. 3), suggesting that these factories were key sources of As 224 

pollution. Moreover, higher As levels tended to be distributed to the north of the factories. 225 

Identifiable point sources from which pollutants might be discharged from the factories 226 

were marked, including the buildings (CF), open ground (SD), chemical storage areas 227 

(WR), and lagoons (LZ). The distances and gradients of sampling points to the nearest 228 

point source were also calculated with the above functions.  229 

2.3 Predicting 230 

The obtained soil samples were divided into three groups, namely the whole study area 231 

(WSA; 1068 sample points), as well as two smaller zones within the whole study area 232 

denoted as test area 1 (TR1; 361 sample points), and test area 2 (TR2; 335 sample points) 233 

(Figure 2). In each group, 50% of the sample points were split out randomly as the training 234 
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data set and the remaining 50% were reserved for later use for validation. The prediction 235 

classifiers were trained and established with each of the following classification algorithms: 236 

(i) support vector machine (SVM), (ii) multi-layer perceptron, (iii) random forest, and (iv) 237 

extreme random forest (Gualtieri and Cromp, 1999; Hu and Weng, 2009; Pal, 2005). The 238 

last of these algorithms is also known as extra tree classifier and is a variation of RF with 239 

decreased variance and increased bias. Thus, ERF is associated with increased 240 

randomization with better classification accuracy (Khanna et al., 2019). To obtain robust 241 

results, each model was trained 500 times with different random states. Afterwards, 500 242 

prediction values were acquired for each specific point and the modal value was assigned 243 

as the predicted value.  244 

2.4 Validation  245 

Modelling predictions were evaluated by comparing with validation data points, with 246 

assessment parameters calculated on the basis of risk level classification (i.e., low, 247 

medium or high). The parameters calculated were the model accuracy, precision, recall 248 

(sensitivity), F1 scores and Cohen’s Kappa coefficient (Turesson et al., 2016; Wang et al., 249 

2016). We assume that Kappa values of 0.4-0.6 indicates moderate agreement; 0.6-0.8 250 

indicates good agreement; and, >0.8  indicates near perfect agreement (Gwet, 2002).  251 

Ordinary and simple kriging interpolation, as well as inverse distance weighted 252 

interpolation (IDWI) were also performed to provide a benchmark that was compared to 253 

the HRAI-based prediction modelling. Kriging interpolation method requires the data to 254 

conform to a normal distribution. However, the As concentration appears to be extremely 255 

skew. To enable Kriging, Box-cox transformation was first conducted on the sample data 256 

set to make the data obey normal distribution approximately. More than 40 parameter 257 

combinations were conducted for each sampling point, and the average of these prediction 258 

values derived from interpolation methods was used as the final prediction value.  259 

3 Results  260 

3.1 Model performance parameters 261 

After training and establishment, the performance of each model was evaluated, with the 262 

achieved parameters for the four machine learning algorithms shown in Figure 4. Overall, 263 
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the RF and ERF based models displayed the best performance at predicting risk levels. 264 

The accuracy of the ERF algorithm reached 0.76 for the whole study area and 0.87, and 265 

0.77 in zones TR1 and TR2, respectively. The F1-score for the ERF algorithms reached 266 

0.86 in TR1. Cohen’s Kappa coefficients of 0.43 to 0.64 for the RF and ERF predictions 267 

were moderate to good. 268 

The F1-scores for classifying low risk samples for all models were > 0.8. The best 269 

predictions of medium or high risk points were obtained using the RF and ERF algorithms. 270 

The RF produced a remarkably high F1-score of 0.89 for classifying high risk points in the 271 

TR1 zone. The poor performance of SVM algorithm, especially for the WSA and TR1, is 272 

likely attributed to the unbalanced data set owing to the limited number of high risk points, 273 

which is discussed in Section 4.  274 

Among the three areas considered (WSA, TR1 and TR2), in general, all models performed 275 

best in TR1. Both the RF and ERF algorithms performed the best in the TR1 zone. The 276 

Cohen’s Kappa coefficients of ERF in TR1 reached 0.64 with the F1-score of 0.86, while 277 

the F1-scores of RF in TR2 and WSA were 0.77 and 0.75, respectively. The F1-scores 278 

associated with the classification of high risk points in TR1 obtained by RF and ERF were 279 

0.89 and 0.80, respectively.  280 

 281 
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Fig. 4. Prediction performance of different machine learning models. RF = random forest; 282 
ERF = extreme random forest; MLP = multi-layer perceptron; SVM = support vector 283 
machine; R1 = low-risk level; R2 = medium-risk level; R3 = high-risk level; WSA = the 284 
whole study area; TR1 = test area 1; TR2 = test area 2; the locations of TR1 and TR2 are 285 
illustrated in Figure 2. 286 
 287 
The map of As risk level in soil is presented (Figure S3). The predicted pattern was 288 

generally congruent with the actual observed one, especially for the locations with the 289 

high-risk level (Figure 3, Figure S3). The result indicates that the approach developed in 290 

this study has the potential to map As risk levels. Figure S3 also demonstrates the 291 

relationship between industrial activities and As pollution risk (Peng et al., 2016). The high-292 

risk level areas were mainly surrounded by the two factories. The As accumulation of 293 

these areas can be explained by the locations where the industrial wastes were stored.   294 

 295 

3.2 Contribution analysis    296 

Evaluating the contribution of the HRAI extracted features reveals how important each 297 

feature is for making predictions. Because the ERF algorithm generally provided the most 298 

accurate predictions, this model was selected to analyse feature contributions. In ERF, 299 

feature importance is used as an indicator of feature contribution.  300 

Figure 5 indicates that the factory was of the most important feature for making accurate 301 

predictions. The distance to waste chemical stores (WR) point sources were also of high 302 

importance. For example, in TR1, the high-risk points were distributed beside the factory 303 

waste stores. Disturbances during the transportation and storage of waste may cause As 304 

contaminants to disperse from the factory to the local farmland, which likely accounts for 305 

the importance of identified waste storage point sources.  306 

High risk points in zone TR2 are mostly around the factory building, meaning that the 307 

distance to factory building (CF) was the most important feature identified in TR2. Apart 308 

from features associated with the factory, the importance of distance and direction of 309 

vegetation related features was also apparent in Figure 5. River related features were 310 

another influential factor, especially in the TR2 zone. In this zone, locations between the 311 

river and factory, and the points beside the river were associated with lower risk.  312 
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 313 

Fig. 5. The importance of features in the ERF model. CF, SD, WR and LZ are the 314 
components of the factory. CF = building; SD = open ground; WR= chemical storage areas; 315 
LZ = lagoons; dis = the distance between the point and specific objective; dx = the gradient 316 
between the point and specific objective in X direction; dy = the gradient between the point 317 
and specific objective in Y direction. For example, CF_dis = the distance between the point 318 
and the building of the factory. 319 

3.3 Comparison with GIMs  320 

A comparison of the performance of the proposed HRAI-based model and traditional GIMs 321 

modeling for different areas is shown in Figure 6. In zone TR2, the HRAI-based model 322 

was an improvement over traditional GIMs for predicting soil As risk levels. The F1-score 323 

of RF reached 0.77 in this zone, which was much higher than that for GIMs (0.55). The 324 

Cohen’s kappa coefficient of RF was twice that of GIMs. The difference in prediction 325 

performance in zone TR1 and the whole study area was less obvious, but the performance 326 

indicators for the ERF modelling were still better than those for traditional GIMs. Moreover, 327 

the F1 scores for predicting points of high-risk level was much greater that of GIMs. 328 

Because high risk points only represented 3.7% of all sampled locations, they could be 329 

categorized as data outliers, thus hindering the prediction of unsampled high risk points 330 

by GIMs. The one instance where traditional GIMs was better than the HRAI-based 331 

modelling was in identifying points of medium risk across the whole study area. The 332 

medium risk points were comingled with the points of high risk in an irregular pattern, thus 333 

rendering classification by the ERF algorithm more difficult. 334 
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 335 

Fig. 6. Comparison between the proposed HRAI-based model and a traditional 336 
geostatistical interpolation method. ERF = extreme random forest; GIMs = geostatistical 337 
interpolation methods; R3 = high-risk level; WSA =  whole studied area; TR1 = test area 338 
1; TR2 = test area 2. 339 

4 Discussion 340 

The RF and ERF algorithms achieved the best performance among the four machine 341 

learning algorithms (Figure 4). The rather similar performance between the RF and ERF 342 

algorithms owes to the fact that they both originate from the decision tree algorithm. The 343 

fact that these two algorithms performed best is because prediction accuracy relates 344 

heavily to the complexity/heterogeneity of the distribution pattern of risk at the different 345 

sample points. It is notable that the risk distribution in TR1 is more homogenous than in 346 

WSA or TR2. In other words, high risk points within TR1 are mainly concentrated in one 347 

area (labelled as Area A in Figure 7a), which means that points of different risk level can 348 

be grouped. Whereas points of high risk in in TR2 and the whole study area are more 349 

scattered, meaning that it is difficult to generate boundaries to separate risk levels (Ji et 350 

al., 2010) which would particularly hinder algorithms that rely on boundaries, like SVM. 351 

The RF and ERF algorithms select subsamples randomly and learn their features to 352 

establish a classifier, which is more appropriate in dealing with heterogenous 353 

classifications (Pal, 2005).  354 
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Prediction accuracies at various points are illustrated in Figure 7. This highlights the 355 

reason why the distinguishing ability of each type of point is different. In Figure 7 (d, for 356 

example, the prediction accuracy of point 1 and 2 is significantly lower than those beside 357 

them. This is because the surrounding points are at low risks, rendering point 1 and 2 a 358 

greater chance of being classified as low risk. In TR2, approximately two thirds of the high 359 

risk points were associated with prediction accuracies of less than 0.5. Figure 6 (f) and (g) 360 

demonstrate that some high risk points are surrounded by low and medium risk points. 361 

Therefore, the commingling of points with different classifications is a major obstacle to 362 

accurate prediction.  363 

 364 
Fig. 7. Region division and prediction accuracy of predicted points. Prediction accuracy 365 
for specific points is the ratio of right predictions to total prediction times (500) for points 366 
in validation set, displayed as grey circles. Observed risk levels for these points were 367 
shown in blue, yellow and red. TR1 = Test area 1; TR2 = Test area 2; WSA = the whole 368 
study area; R1 = low-risk level, R2 = medium-risk level, R3 = high-risk level.  369 

Heterogeneous distribution of contaminants is one of the most distinct characteristics of 370 

soil contamination, and the complicated pattern of contaminant distribution is unavoidable. 371 
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However, despite the complex study field, a high degree of prediction accuracy was still 372 

achievable. In fact, the main achievement of this study was the fact that the risk levels 373 

more accurately predicted as compared with traditional Kriging interpolation approaches. 374 

The Kriging method was initially established to evaluate mineral deposit reserves, which 375 

are much more abundant than the typical trace levels of contaminants in soil (Leung et al., 376 

2018; Pan et al., 1993). In Kriging, for example, localized high levels of contaminants 377 

would be considered as data outliers and smoothed out to enhance the robustness of the 378 

model (Zhang et al., 2018a). Accordingly, errors in predicting unsampled high risk 379 

locations by Kriging can be relatively large. Whereas, the extracted features from HRAI 380 

images allows a targeted approach to predicting high risk areas.   381 

The identification and extraction of pertinent features from HRAI images is central to the 382 

modelling approach developed. In this study the locations of some notable components 383 

(e.g., rivers, vegetation, and factories) were identified and marked. One way in which the 384 

modelling performance could be improved substantially would be to identify and extract 385 

further features in greater detail, especially land features. Systematic identification of 386 

hydrological features and weather patterns, for example, could be highly influential, as 387 

these affect contaminant migration directions and magnitudes (Toranjian and Marofi, 388 

2017). It is recommended that HRAI based predictions could be combined with in situ 389 

detection methods such as portable XRF. This would enable greater amounts of training 390 

data to be generated at lower cost than traditional soil sampling and chemical analysis 391 

approaches.  392 

There are two limitations in this study that should be clarified. Firstly, the RGB-related 393 

variables, which were assumed to have the potential to indicate the interactions between 394 

As and soil components, showed little influence on the prediction tasks (Figure 5). This 395 

result may demonstrate that this initial intention has not been realized. Secondly, 396 

additional data, including the location and other basic information of the pollution sources, 397 

is required from the local authorities in the proposed approach. 398 

5 Conclusions  399 

In this study, a novel method was proposed to predict risk levels through high-resolution 400 

aerial imaging (HRAI). A total of 1068 samples were collected from Zhongxiang, Hubei in 401 

southern China, and analysed for As concentrations. The risk level of each sample point 402 
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was assessed. Three types of feature sets, including RGB bands, ground components 403 

(e.g. vegetation and rivers) and point sources at factories, were extracted from a HRAI 404 

image of the study area. Half of the soil sample data was used as training data, while the 405 

rest was reserved as validation data. Machine learning algorithms (i.e., MLP, SVM, RF, 406 

and ERF) were developed based on the extracted features. Predicted risk levels were 407 

compared with the validation data, with the ERF model generally being more accurate 408 

than the other algorithms as well as traditional kriging interpolation. The average 409 

classification accuracy of the ERF model in TR1 reached 0.87, and the highest F1-score 410 

of R3 was up to 0.8. Mixing of different risk levels of the points undermined the model 411 

prediction accuracy and features related to the factory were of importance, indicating that 412 

the factory is the primary pollution source. Therefore, the proposed method has the 413 

potential to map soil As for decision-making process.  414 
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