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20 ABSTRACT

21 Biochar has triggered a black gold rush in environmental studies as a carbon-rich material with well-

22 developed porous structure and tunable functionality. While much attention has been placed on its 

23 apparent ability to store carbon in the ground, immobilize soil pollutants, and improve soil fertility, 

24 its temporally evolving in situ performance in these roles must not be overlooked. After field 

25 application, various environmental factors, such as temperature variations, precipitation events and 

26 microbial activities, can lead to its fragmentation, dissolution and oxidation, thus causing drastic 

27 changes to the physico-chemical properties. Direct monitoring of biochar-amended soils can provide 

28 good evidence of its temporal evolution, but this requires long-term field trials. Various artificial aging 

29 methods, such as chemical oxidation, wet-dry cycling and mineral modification, have therefore been 

30 designed to mimic natural aging mechanisms. Here we evaluate the science of biochar aging, critically 

31 summarize aging-induced changes to biochar properties, and offer a state-of-the-art for artificial aging 

32 simulation approaches. In addition, the implications of biochar aging are also considered regarding 

33 its potential development and deployment as a soil amendment. We suggest that for improved 

34 simulation and prediction, artificial aging methods must shift from qualitative to quantitative 

35 approaches. Furthermore, artificial pre-aging may serve to synthesize engineered biochars for green 

36 and sustainable environmental applications.

37 KEYWORDS: soil carbon; remediation; heavy metals; soil health; climate change mitigation

38
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42 1 INTRODUCTION

43 Biochar is a carbon-rich porous material that is produced by the pyrolysis or hydrothermal 

44 carbonization of raw biomass 1, 2.  While new applications for biochar continue to emerge (e.g., as a 

45 catalyst), in general, uses for this material have divided in two directions. One is as an alternative to 

46 activated carbon usage in wastewater 3-5 or flue gas treatments 6. The other is as a soil amendment. 

47 Biochar’s promise as a soil amendment is tremendous because it offers multiple functions, including 

48 increased soil fertility 7, 8, the remediation of polluted soils 9, 10, and in situ carbon sequestration as a 

49 way to mitigate climate change 11. 

50 Land degradation issues around the world hinder global efforts toward meeting food demand 12-15. 

51 Since the discovery of Terra Preta de índio, an anthropogenic black and extremely fertile soil in 

52 Amazon Basin enriched with charcoal (biochar) 16, 17, there seems to be a “black gold rush” over the 

53 past few decades.  Today, biochar again promises a potential route to sustainable food security owing 

54 to its ability to increase soil fertility levels in various ways including the provision of labile organic 

55 carbon, improved soil nutrient retention, improved soil structure, improved water holding capacity, 

56 neutralized soil acidification, and more amenable growing conditions  16, 17.  Meta-analysis of 371 

57 plant productivity studies in soils amended with biochar has indicated its ability to significantly 

58 increase aboveground productivity and crop yields (p<0.01 for both productivity and yield, increase 

59 by 30% and 19% on average, respectively) 18.

60 Meanwhile, the industrialization of developing countries has resulted in heavy metal(loid) 

61 contamination across large areas of agricultural land. In China, for example, analysis of 1041 soil 

62 samples throughout the country reveals that cadmium is widely encountered in agricultural soils (0.01 

63 – 74.75 mg/kg, with the average value of 0.87 mg/kg), leading to concerns over rice crops being 
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64 contaminated and unsafe for consumption 19, 20. Over 3.3 millions of hectares of agricultural land are 

65 now too contaminated to use due to such pollution issues 21. Biochar’s capability to immobilize 

66 harmful soil contaminants in situ suggests that this material also promises a potential route to improve 

67 food security in areas affected by contaminated soils 9, 22-24. 

68 Furthermore, soils are a major factor for global greenhouse gas (GHG) emissions and must feature 

69 in efforts to tackle the climate crisis.  Because biochar’s carbon structure is known to be recalcitrant 

70 within the soil environment, biochar production and field application offers a potential route to 

71 removing carbon from the atmosphere (i.e., during biomass growth) and long-term storage. It is 

72 estimated that production of biochar and its field application could potentially offset 12% of 

73 anthropogenic CO2-C equivalent emissions (i.e., 1.8 Pg CO2 vs 15.4 Pg CO2 per year) 11.

74 Although the number of biochar-related studies are booming, the long-term environmental 

75 behaviors of biochar are much less explored compared with other research areas such as short-term 

76 remediation performances. Once applied to the soil, biochar undergoes an aging process. Various 

77 natural forces, such as freeze-thaw cycles (induced by variations in temperature) 25, wetting-drying 

78 cycles (caused by rainfall events) 26, photochemical degradation (as a result of sunlight irradiation) 27 

79 and mild oxidation (caused by atmospheric oxygen, root exudates or microorganisms) 28, 29 lead to 

80 significant changes in biochar physicochemical properties, such as the specific surface area (SSA), 

81 surface morphology, acidity, elemental composition, ion exchange capacity and the aromaticity. Such 

82 changes could either be to the enhancement or detriment of biochar’s performance for field 

83 applications and long-term carbon storage over time. However, the long-term behavior of biochar 

84 within the soil environment has not yet been summarized in sufficient detail. It is time-consuming to 

85 monitor the long-term effects of biochar application, since some of the natural aging process can be 

86 very slow (half-life more than 1000 years) 30. Therefore, various artificial aging methods, such as 
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87 chemical oxidation, physical aging and the biological aging have been proposed as proxies for natural 

88 aging, cutting the aging duration from years or months to days or hours.

89 Based on various aging mechanisms, changes in biochar properties could either enhance or inhibit 

90 biochar’s performances in soil amendment, environmental remediation and climate change mitigation. 

91 Furthermore, to embrace a healthy and sustainable agroecosystem, it is necessary to comprehend the 

92 role of long-term biochar field application in both agricultural and remediation aspects. The aims of 

93 this review are to 1) propose biochar aging mechanisms, and examine aging-induced changes in 

94 biochar physico-chemical properties; 2) explore the effects of biochar aging on the basis of aging-

95 induced changes in biochar properties; and 3) comprehend the role of biochar long-term aging in 

96 sustainable agriculture using a generalized framework. Challenges and potential future research 

97 directions are also put forward.

98 2 MECHANISMS 

99 Biochar in the soil is subject to various natural aging mechanisms. As biochar’s carbon content is 

100 largely recalcitrant, full mineralization (e.g., biochar conversion to H2O and CO2), either by biotic or 

101 abiotic pathways is slow, with reported half-lives in the order of 1000 years 30. Aging mechanisms 

102 that result in changed properties are relatively quicker, yet these are still slow to observe in the field. 

103 Artificial accelerated aging methods, which mimic natural aging mechanisms, can significantly 

104 reduce observation times. The most relevant biochar aging mechanisms are illustrated in Figure 1 

105 along with implications for artificial accelerated aging methods.  

106 Biochar aging can occur from natural rainfall or freeze-thaw events in seasonally frozen areas which 

107 leads to mechanical fragmentation, surface oxidation, dissolved organic matter (DOM) release and 
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108 mineral dissolution (i.e., decreased ash content). Such environmental processes can be accelerated 

109 experimentally by wet-dry cycling, chemical oxidation and freeze-thaw cycling. Soil mineral 

110 interaction with biochar can result in pore blockage and increased biochar mineral content, whereas 

111 biochar adsorption of root exudates may cause acidification and mineral dissolution. These processes 

112 can be accelerated experimentally by chemical modification. Biological and photochemical processes 

113 can result in oxidation and release of biochar’s labile carbon content, which can be accelerated 

114 experimentally by microbial inoculation and UV irradiation, respectively. The specific mechanisms 

115 involved in biochar aging are discussed in the subsections below.

116
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117 Figure 1. Biochar field aging mechanisms and implications for artificial accelerated aging shown in 

118 parenthesis. 

119 2.1 Dissolution

120 The dissolution of mineral components (de-ashing) is an important aging process with agronomic 

121 implications. Mineral dissolution from biochar can be divided into two stages 31:

122 Stage 1 – Initial rapid element detachment induced by ion exchange, submicrometer particle 

123 dissolution, and preferential dissolution at crystal imperfections (last for  h);𝑡1

124 Stage 2 – pH-dependent zero-order reaction (Eq. 1) 31:

125 𝑅𝑖 = 𝐾𝑖[H + ]𝑛      (1)

126 where  is the zero-order (constant) reaction rate of element i (e.g., K, Ca, Mg, P),  refers to 𝑅𝑖 𝐾𝑖

127 mineral specific rate constant of element i,  represents the proton activity, n is the reaction order [H + ]

128 for .[H + ]

129 Therefore, the total amount of elements released can be calculated as follows (Eq. 2):

130 𝑄𝑖𝑡 = 𝑄𝑖1 + 𝑅𝑖(𝑡 ― 𝑡1)      (2)

131   where  represents the total amount of released element i after these two stages,  refers to the 𝑄𝑖𝑡 𝑄𝑖1

132 amount of element i during the first stage, t is the reaction time.

133 The dissolution kinetics for different elements may vary. The first stage dissolution of Ca, Mg and 

134 P could last for 24 h, releasing substantial amount of elements from corn straw biochar (27%, 47%, 

135 41% of the total Ca, Mg and P content, respectively). After that, the pH-dependent dissolution of Ca 
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136 (  at pH 6.9) and Mg (  at pH 6.9) could be faster as compared with P (𝑅𝐶𝑎 = 0.049 𝑅𝑀𝑔 = 0.108 𝑅𝑀𝑔

137  at pH 6.9) 31. Nevertheless, the element K does not obey this two-stage rule, which could be = 0.016

138 released very rapidly (i.e., release 30% at the first hour in aqueous solution) 31. A study by Limwikran 

139 et al. 32 even observed that the large amount of K released from the fruit waste biochars (i.e., 16,201 

140 – 33,843 mg/kg) could have displaced sufficient exchangeable Ca from the soil, thus increasing the 

141 total Ca in biochar (i.e., by 2,144 – 11,098 mg/kg) after incubation for 8 weeks in different tropical 

142 soils.

143 Various natural or anthropogenic events will lower soil pH levels (e.g., the introduction of H+), 

144 leading to greater mineral release from biochar (Figure 1). Rainfall events are the most important 

145 contributor of soil acid. Typically, rainwater is slightly acidic (pH ~ 5.6) due to dissolved CO2 (i.e., 

146 carbonic acid). In the case of acid rain, dissolved air pollutants, such as NOX and SO2, results in much 

147 a lower pH value (pH ~ 4) and greater levels of H+ being introduced to soils 33. Moreover, plants 

148 release low molecular weight organic acids (LMWOAs), such as citric acid, malic acid, oxalic acid, 

149 acetic acid or formic acid, which can also cause biochar minerals to dissolve in the rhizosphere 28, 34, 

150 35. This rhizosphere effect has been reviewed in-depth elsewhere 35, 36.

151 2.2 Fragmentation

152 Mechanical disintegration is an important, yet often overlooked, aging mechanism. Rainfall and 

153 freeze-thaw cycles are the dominant causes of biochar physical fragmentation and breakdown in the 

154 field (Figure 1). During rainfall events, water sorbed in biochar can cause graphite sheets to swell, 

155 resulting in structural expansion (Figure S1) 37. Expansion and shrinkage of water molecules during 

156 the freeze-thaw cycles can also cause physical fragmentation 38. Compared with more flexible raw 

157 biomass, biochar will tend to fracture at relatively low strain under mechanical stress. These structural 
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158 defects lead to fragmentation (Figure S1) 37, 39.  Small biochar particles can form in this way, which 

159 are termed dissolved black carbon, with no detectable change to the elemental composition or other 

160 chemical properties 37. 

161 2.3 Interactions with soil minerals

162 After biochar is applied to the soil, minerals can interact with it through adsorption reactions and 

163 attach onto the biochar surface (Figure 1). The adsorption of soil minerals onto biochar can shield it 

164 from decomposition and oxidation processes, and the formation of biochar-mineral complexes 

165 enhances long-term carbon sequestration 40, 41. Soil minerals, such as kaolinite, montmorillonite, iron 

166 oxides and aluminum oxides can attach tightly to biochar surfaces through the formation of surface 

167 complexes such as Fe-O-C, or by incorporation into inner pores, resulting in pore clogging 42 and 

168 enhanced oxidation resistance 43. A relatively high Al concentration has been observed at the interface 

169 between soil minerals and aged biochars, suggesting the vital role of Al-containing minerals in this 

170 interaction 40. Kaolinite could enhance the oxidation resistance of walnut shell biochar, since the 

171 content of oxygen-containing functional groups for kaolinite protected biochar was much lower than 

172 that of biochar exposed to air after 3 months incubation (16.1% vs 36.3%) 43. It could be that the soil 

173 minerals protected the biochar surface from oxidation via forming a physical barrier (Figure 2e). 

174 However, we found that most studies have overlooked the role of soil mineral interactions in assessing 

175 biochar aging. 

176 2.4 Biological degradation

177 The well-developed porous structure of biochar offers a significant microbial habitat niche 44, 45. It 

178 has long been established that extensive colonization occurs for biochars subjected to hundreds of 

179 years of natural aging 46, 47, yet it is still debated whether soil organisms will colonize biochars 

Page 11 of 67

ACS Paragon Plus Environment

Environmental Science & Technology



Page 12

180 effectively in a relatively short aging duration (i.e., several years). After 3 years of field aging, the 

181 wood biochar remained sparsely colonized due to the lack of labile carbon 48. In comparison, grass 

182 biochars can not only be easily colonized, but also used as a substrate only after 90 days of short 

183 incubation 49. It is therefore proposed that the carbon bioavailability determines the speed of microbial 

184 colonization. The higher the labile carbon content (e.g., aliphatic C compounds), the more rapid the 

185 colonization 45. In addition, the physical fragmentation (i.e., the exposure of more interior surfaces) 

186 and abiotic oxidation (i.e., the disintegration and partial oxidation of recalcitrant C) may have 

187 accelerated the colonization process 48.

188 Complete mineralization of biochar (to H2O and CO2) by microorganisms may take hundreds to 

189 thousands of years 30, 50, whereas changes in biochar properties may also be significant due to 

190 microbial colonization and degradation after several years of field application. Soil microorganisms 

191 play an important role in biochar surface oxidation and labile carbon loss owing to the introduction 

192 of additional oxygen-containing functional groups and DOM release (Figure 1) 51. At the initial stage 

193 of microbial degradation, the breakdown of aliphatic C compounds results in the disconnection of 

194 aromatic moieties and oxidation at the break points 52. After mineralization of labile C pool in the 

195 short term (usually between 2 to 60 days) 53, the degradation rate of biochar carbon decreases 

196 dramatically. A 14C isotopic labelling study suggested that the decomposition rate of ryegrass biochar 

197 could be very high (up to 0.15% d-1) during the first two months of incubation. After that, the 

198 decomposition rate decreased sharply to 0.0015% d-1 and remained stable 50. Fungi are known to 

199 degrade recalcitrant carbon in soil 54, 55. An increase in fungal biomass during the second stage of 

200 biochar degradation indicated that fungi played vital roles in microbial decomposition of recalcitrant 

201 aromatic moieties 54. In particular, saprophytic fungi (e.g., white-rot fungi) could break down highly 
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202 condensed aromatic structures such as lignin 56, 57 and polycyclic aromatic hydrocarbons (PAHs) 58, 

203 59, accounting for the long-term degradation of biochar in soil 60.

204 Soil fauna also contribute to the biological degradation of biochar 53. As the most widely explored 

205 soil macroorganism, earthworm accelerates the aging process via different pathways. Firstly, soil 

206 bioturbation and ingestion of biochar by earthworms results in the physical disintegration, thus 

207 favoring the abiotic or microbial decomposition 53. In addition, biochar can be inoculated with 

208 microorganisms (e.g., Firmicutes, Actinobacteria, Proteobacteria) while passing through the guts 61-

209 63. Considering that microbial colonization could be a slow process for biochars with a high 

210 recalcitrant C content (i.e., aromatic rings) 48, the earthworm-facilitated microbial inoculation may 

211 have accelerated the microbial aging. Very limited data suggest that other soil macroorganisms, such 

212 as nematodes and arthropods may also be involved in biochar aging. Application of wheat straw 

213 biochar significantly increased the abundance of fungivore nematodes (p<0.05), which may in turn 

214 regulate biochar degradation via alterations in soil fungal community 64. Fecal pellets from arthropods 

215 have been observed within a charcoal-rich layer of the forest soil, suggesting that biochar can be 

216 ingested and processed by these animals 65, 66. There is an urgent need to explore the role of these 

217 macroorganisms in long-term biochar degradation.

218 2.5 Abiotic oxidation

219 Biochar oxidation can occur abiotically or biotically, with a number of studies suggesting that 

220 abiotic oxidation plays the dominant role 67-71. Abiotic biochar oxidation has been observed to occur 

221 through various processes. 

222 Atmospheric oxygen-induced oxidation can introduce additional oxygen-containing functional 

223 groups, such as hydroxyl, carbonyl and carboxyl, to the biochar surface. This mild oxidation process 
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224 is slow at ambient temperature 72. For instance, atmospheric aging of sludge biochar for 2 months 

225 could only increase the amount of oxygen-containing functional groups by 2% (incubation 

226 temperature 45 °C, measured by the Boehm titration method) 72. Rainfall events can also result in 

227 biochar oxidation owing to the dissolved oxygen and nitrogen oxides in rainwater 73-75.  Rainfall 

228 events can also lead to physical disintegration and acidification, thus causing labile carbon to be 

229 released as DOM, minerals to leach out and additional oxygen-containing functional groups, such as 

230 hydroxyl, carbonyl and carboxyl, to be introduced to the biochar surface. It is not yet clear whether 

231 biochar is oxidized during freeze-thaw processes. Some studies have reported slight increases in the 

232 surface oxygen content, although the precise oxidizing mechanism is unknown 38, 76. Others studies 

233 did not observe any significant changes to biochar’s elemental compositions after freeze-thaw cycles 

234 77. 

235 Photochemical transformation has been observed to be a key abiotic oxidation mechanism. The 

236 dissolved black carbon released from biochar could generate reactive oxygen species (ROS), 

237 including the hydroxyl radical (·OH), singlet oxygen (1O2), and superoxide (O2
-) (i.e., the self-

238 generation of ROS) 27, 78, which will in turn lead to the phototransformation of biochar. For instance, 

239 the dissolved organic carbon from the bamboo biochar could generate 1O2 more effectively (apparent 

240 quantum yield 4.07%) than many well-studied photoactive components in terms of ROS generation 

241 (apparent quantum yield fell within 1.18% - 2.48%) 79. In addition, ROS can also be generated directly 

242 from the biochar matrix. For instance, the carbon matrix of crop residue biochars generated 10% - 45% 

243 1O2 and 64% - 75% ·OH, whereas the dissolved organic matter derived from biochars accounted for 

244 47% - 86% 1O2 and only 4% - 12% ·OH generation 80. Fenton-like reactions, either with the presence 

245 of LMWOAs (Section 4.2.2) 27 or persistent free radicals (PFRs) 80, favor the formation of the ·OH. 
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246 Aromatic ketones 81, aromatic amino acids 82 and quinones 80 are potential chromophores for 1O2, 

247 whereas the silica minerals 79 and the phenolic groups 83 in biochar play vital roles in O2
- generation. 

248 3 PHYSICO-CHEMICAL CHANGES

249 Biochar will display a series of physical and chemical changes overtime due to being subjected to 

250 aging processes. These physico-chemical changes are discussed in the sub-sections below.

251 3.1 Physical changes

252 Compared with fresh biochar, both naturally aged and artificially aged biochars can display 

253 significant differences in their surface morphologies, as revealed by scanning electron microscopy 

254 (SEM) imaging (Figure 2). The blockage or fragmentation of the biochar structure will affect 

255 properties such as the surface area, pore volume and the pore diameter. It has been reported that 3 

256 years of natural field aging in the Qinghai Tibetan Plateau caused the surface morphology of rice husk 

257 biochar to become much rougher and show signs of collapse (Figure 2a) 84. Even when biochar is 

258 not applied to soil, atmospheric oxidation can lead to much more irregular structures (Figure 2b) 85. 

259 Compared with natural aging, the effects of artificial aging on biochar surface morphologies tend to 

260 be more pronounced. For example, biochar subjected to artificial wet-dry cycles revealed ruptured 

261 pores (Figure 2c) 38. Artificial chemical oxidation can lead to the presence of floccules of oxidized 

262 matter on biochar surfaces 74 (Figure 2d).  SEM images have revealed that biochar interactions with 

263 fine clay particles can lead to severe pore blocking (Figure 2e) 42. Biological aging can also lead to 

264 the blocked pores due to microbial coating (Figure 2f) 86. Substantial changes in surface morphology 

265 is closely related to the environmental implications (Table S2). The exposure of more interior 

266 surfaces due to pore collapse results in enhanced exposure and dissolution of inorganic minerals, thus 
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267 promoting plant growth in the long run 84. Although aging with soil minerals will block the pores, the 

268 adsorption capacity towards contaminants could be increased due to the high surface area of the 

269 attached minerals (Table S2) 42.

270

271 Figure 2. Scanning electron microscopy (SEM) images revealing the surface morphology of fresh 

272 and aged biochars subjected to various aging methods. (a) Rice husk biochar, naturally aged for 3 

273 years in the field 84. (b) Pine wood biochar formed during a wildfire event, naturally aged outdoors 

274 for 10 years without any contact with soil  85. (c) Corn stalk biochar, physically aged through artificial 

275 wet-dry cycles 38. (d) Rice straw biochar, artificially aged through HNO3/H2SO4 oxidation 74. (e) Pig 

276 manure biochar, chemically aged by interaction with soil minerals 42. (f) Biosolid and green waste co-

277 pyrolyzed biochar, biologically aged through composting 86. All images are reproduced with 

278 permission. 
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279 The specific surface area (SSA) of biochars can either increase or decrease because of aging. 

280 Usually, the SSAaged:SSAfresh ratio will fall between 0.5:1 and 2:1 (Figure 3a). A few studies have 

281 reported more extreme changes. One study of natural biochar aging reported a 4.5:1 ratio, which was 

282 attributed to large amounts of labile carbon loss 87. Another study involving artificial chemical 

283 oxidation induced aging reported a 0.09:1 ratio, which was attributed to the collapse of inner pores 88.  

284 Aging-induced changes to biochar surface area are usually related to biochar oxidation, mineral 

285 dissolution, DOM release, or sorption processes that affect the biochar pore structure. For example, 

286 increased SSA values after aging may stem from the formation of new pores by the aggregation of 

287 biochar and biochar-derived organic substances 38, dissolution of labile carbon 89, or chemical 

288 oxidation of biochar carbon compounds in acidic or alkaline conditions 71.  In contrast, several 

289 mechanisms are attributed to decreased SSA values after aging, including the blockage of pore 

290 structures due to the dissolution-precipitation of inorganic minerals 38,  the formation of oxygen-

291 containing functional groups at pore entrances 88, or physical clogging by soil substances 90.

292 According to the literature reviewed, the total pore volume (TPV) may either increase or decrease 

293 (TPVaged: TPVfresh fell between 0.01:1 and 3.33:1) due to the similar mechanisms. As for pore 

294 diameter, current studies suggest that biochar aging may lead to the formation of meso- and micro-

295 sized pores. Some studies have indicated that mesopores are more likely to form during chemical 

296 oxidation, as evidenced by N2 adsorption isotherms changing from IUPAC Type I (fresh biochar, 

297 microporous) into Type IV (aged biochar, mesoporous) (Figure S2) 29, 71, 91. Others have reported that 

298 natural aging favors the formation of micropores 89. This finding was probably due to labile carbon 

299 being leached out or degraded by soil microorganisms. Compared with soil fertility improvement, 

300 aging-induced changes in porous structure affects more on remediation purposes. Higher surface area 

301 indicates more available sites for contaminant binding (especially for organic contaminants) 9, 22. A 

Page 17 of 67

ACS Paragon Plus Environment

Environmental Science & Technology



Page 18

302 well-developed meso- and micro-pore structure enhances contaminant adsorption via pore filling 42, 

303 92. Therefore, an increase in specific area and pore volume favors the immobilization of soil 

304 contaminants, and vise versa (Table S2) (Section 5.2).

305

306 Figure 3. Reported changes to biochar chemical properties due to aging: (a) specific surface area 

307 (SSA); (b) ash content and pH; (c) van Krevelen diagram for biochars subjected to various aging 

308 processes; (d) carbon loss and surface oxidation during chemical aging. Literature values are provided 

309 in Table S3.
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310 3.2 Chemical changes

311 Biochar aging can reduce its ash content and increase its acidity level (i.e., lower pH value). Aging 

312 by chemical oxidation results in biochar acidification and the release of ash minerals whereas physical 

313 aging is much milder, resulting in only slight variations in biochar pH. In general, the acidification 

314 effect is in the order of chemical > natural > physical (Figure 3b).  This is because chemical aging 

315 by oxidation (using H2O2, HNO3, H2SO4, citric acid) favors the formation of acidic functional groups 

316 (e.g., carboxylic, phenolic) on biochar surfaces 28, 93, 94. Although wet-dry and freeze-thaw cycles can 

317 also introduce oxygen-containing functional groups, these are much weaker in the context of biochar 

318 acidification 38. Limited evidence has shown that biological aging can increase or decrease biochar 

319 pH levels. Decreased pH levels may owe to the same reasons discussed above 77.  Increased pH levels 

320 may stem from microbial activity, with one study reporting that the pH of a hydrochar increased from 

321 a relatively low initial pH level of 4.18 to 6.92 due to microbial decomposition of organic acids 29. 

322 The acidification effect is usually an unwanted phenomenon in field applications. The decrease in soil 

323 pH as a result of biochar acidification will be detrimental to plant growth (Section 5.1), and mobilize 

324 metallic cations (Section 5.2). Furthermore, acidification may be associated with stimulated GHG 

325 emissions (Section 5.3).

326 The ash content of biochar relates to the inorganic mineral components 24. Natural aging in the field 

327 favors the adsorption of soil minerals onto biochar surfaces, resulting in higher ash content (i.e., 

328 ashaged/ashfresh > 1). Conversely, chemical aging can cause the dissolution of biochar minerals during 

329 oxidation (i.e., ashaged/ashfresh < 1). Physical and biological aging, such as wet-dry or freeze-thaw 

330 cycles, can either increase or decrease biochar ash contents because of alternating dissolution and 

331 precipitation processes, with the resulting ash content depending on the balance of these processes 

332 (ashaged/ashfresh is typically 0.64 – 1.65). It is noteworthy that while physical aging does not usually 
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333 affect biochar pH levels significantly, the ash content of physically aged biochar may vary greatly 

334 from that of fresh biochar. On the one hand, the higher ash content of naturally field aged biochars 

335 indicate the presence of more inorganic nutrients (e.g., K, Ca, Na, Mg) within the charosphere 48, 95. 

336 On the other hand, the de-ashing effect as a result of chemical aging may weaken the co-precipitation 

337 immobilization performance towards soil metals (Section 5.2).

338 Aging significantly affects the presence of biochar surface functional groups and elemental 

339 composition. Both natural and artificial aging approaches can introduce oxygen-containing functional 

340 groups, such as hydroxyl, carbonyl and carboxyl, onto biochar surfaces. This is evidenced by Fourier 

341 Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS) observations 

342 52, 89, 93, 96-98. As for the elemental composition, a decrease in C content and increase in O content is 

343 typically observed as biochar ages, indicating the dissolution of labile C and the formation of O-

344 containing functional groups 38, 51, 99. 

345 Compared with natural aging, artificial aging approaches can lead to significantly higher O:C ratios 

346 due to over oxidation (Figure 3c). Common chemical oxidation aging methods involve the use of 

347 HNO3 and H2SO4, which can raise the O:C ratio to as much as twice that of natural aging. Freeze-

348 thaw cycles tend to cause greater increases to the O:C ratio than wet-dry cycles (Figure 3c, average 

349 O:C ratio 1:4.1 vs 1:3.3) due to the joint effects of physical fragmentation and the presence of 

350 temperature-tolerant microorganisms (e.g., Chryseobacterium, Enterococcus, Pseudomonas) which 

351 use biochar labile carbon as a C source during freeze-thaw cycles 100, 101. These microorganisms are 

352 killed by oven drying in wet-dry cycles 102, 103. In general, artificial aging with LMWOAs presents the 

353 closest elemental composition to that of natural aging, followed by wet-dry cycling, biological aging, 

354 and last of all, chemical oxidation.
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355   On the one hand, chemical oxidation fails to simulate natural aging (Figure 3c). On the other hand, 

356 the phenomenon of over-oxidation can be used to produce engineered biochars (rich in oxygen 

357 content) (Figure 3d). Chemical acidification with HNO3/H2SO4 is the most effective way to increase 

358 O content, whilst mild oxidation with root exudates (LMWOAs) has little effect on biochar oxidation 

359 (Figure 3d). Biochar oxidation is usually accompanied by carbon loss due to mineralization (oxidize 

360 to CO2) (Figure 3d), but LMWOAs modification will not decrease C content (due to sorption of 

361 organic acids on biochar surface). To synthesize engineered biochars, it is suggested that 1) 

362 LMOWAs-induced aging can improve soil fertility, since the organic acids act as labile carbon forms 

363 that can be easily used by plants and rhizosphere microorganisms; 2) harsh oxidant-modified biochars 

364 can be used for contaminant sorption and immobilization due to enhanced surface complexation 

365 (Section 5.2).

366 The atomic H:C ratio is often regarded as an indicator for biochar’s carbon compound aromaticity, 

367 with high ratios associated with low aromaticity 52, 104. Chemical oxidation and acidification with 

368 H2O2, HNO3 and H2SO4 can increase aromaticity through dissolution of labile aliphatic carbon, while 

369 wet-dry and freeze-thaw cycles usually cause little change to biochar aromaticity (Figure 3c). In 

370 general, chemical modification with LMWOAs renders the closest H:C ratio changes compared to 

371 natural aging, while the use of harsh oxidants such as H2O2, NaClO, HNO3 and H2SO4 can lead to 

372 severe over-oxidation and inaccurate representation of natural aging (Figure 3c).

373 Cation exchange capacity (CEC) is a measure of biochar’s ability to hold positively charged ions, 

374 including nutrients or soil contaminants. It also serves as a way to measure biochar oxidation, with 

375 greater sensitivity than the O:C ratio 77. For example, an aging induced change from phenol to ketone 

376 groups will not alter the O:C ratio, but will increase the CEC value 77, 105. In general, aged biochars 
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377 usually display higher CEC values than fresh biochars, which can be attributed to surface oxidation 

378 52, 77, 106, 107. One study reported a CEC decrease after aging (from 19.8 to 1.1 cmol/kg) 108. 

379 The anion exchange capacity (AEC) is also an important measurement. The AEC value relates to 

380 the nutrient retention capability of biochar and its capacity for anionic contaminant sorption 109, 110. 

381 Anion exchange sites include oxonium groups (sp2-O heterocycles), protons electrostatically 

382 adsorbed by π-electrons of aromatic rings, and protonated pyridimium groups (N heterocycles) 

383 (Figure S3) 110. Decreased AEC values have been observed for biochar after natural aging and after 

384 artificial aging with NaOH/H2O2. A drop in the AEC value may stem from the loss of formal charge 

385 on O+ as a result of oxonium reduction to ether induced by hydroxyl radical 108. While a decrease in 

386 biochar pH would not necessarily affect oxonium groups, it may increase the positive charge density 

387 of N heterocycles, and, therefore, release more protons for electrostatic adsorption 108. An increase in 

388 biochar CEC with aging promotes soil fertility in the long run (Section 5.1). An elevation in CEC is 

389 helpful for the retention of metallic cations (such as copper 111, zinc 112, cadmium 113 and lead 114), 

390 while the decrease in AEC will not be favorable for the immobilization of oxyanions (such as arsenic 

391 115 and chromium 116). 

392 At the molecular level, biochar can change significantly due to aging processes (Figure S4) 52. For 

393 example, aromatic moieties can become disconnected due to the degradation of the labile aliphatic 

394 chains that connect them 52. These aromatic rings will be oxidized, and O-containing functional 

395 groups (e.g., hydroxyl, carboxyl, carbonyl) will form on the biochar surface (resulting in increased 

396 O/C ratio). With progressive aging, aromatic moieties can fragment into smaller compounds with 

397 benzene polycarboxylic acids (BPCAs) eventually forming 117-119. The full transformation of large 

398 aromatic moieties into small BPCAs may take hundreds to thousands of years. In Amazonian Terra 

399 Preta soils, biochar produced ~800 years ago has been discovered to now be mainly composed of ~6 
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400 fused benzene rings substituted by carboxyl groups with negative charges (COO-) 52, 120. In extreme 

401 cases, molecular benzene ring with six carboxyl groups will form (B6CA), which will take a very 

402 long time (i.e., > 1000 years) 52, 120. For more information regarding the carbon chemistry of aged 

403 biochars, we refer readers to Mia et al. 52.

404 It is noteworthy that the biomass feedstock, pyrolysis conditions and field characteristics will affect 

405 the aging process. A detailed discussion on how these factors influence biochar aging and 

406 environmental applications is provided in Text S1 and Table S1.

407 4 ASSESSMENT

408 Several in situ monitoring studies can provide good evidence regarding biochar’s temporal 

409 evolution within the soil environment. However, because of time constraints, researchers have more 

410 commonly attempted artificial aging methods as a proxy for natural aging, thus cutting the study 

411 duration (Table S4). Natural and artificial aging methods are discussed in the sub-sections below.
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412 4.1 Natural aging methods

413 Long-term in situ field aging is the most direct way to observe biochar aging. Recovering biochar 

414 particles from the field, by hand-picking or the use of physical separation methods, allows the aged 

415 biochar properties to be assessed. Among the literature reviewed, the longest field trial duration was 

416 9.5 years (Table S4). Such field trials, however, are few and far between due to impracticalities of 

417 such studies. Researchers often prefer to incubate biochar-soil mixtures in pot-based studies with 

418 constant moisture and humidity. However, pot studies cannot accurately simulate outdoor factors such 

419 as rainfall, temperature variance, sunlight. An alternative approach for studying long-term aging 

420 effects is to collect biochar that was produced by known historic natural events such as wildfires 121 

421 or at former kiln sites 122.

422 4.2 Artificial aging methods

423 Considering the fact that natural aging is a slow process, artificial aging methods, such as physical 

424 aging (e.g., freeze-thaw, wetting-drying), chemical aging (e.g., chemical oxidation, organic acid 

425 modification) and biological aging (e.g., co-composting) have emerged as alternatives to natural 

426 biochar aging (Table S4). These methods help shorten the aging duration from years to months or 

427 days.

428 4.2.1 Physical aging

429 Temperature and moisture are important factors in physical aging 51, 123, 124. For example, in middle-

430 to-high latitude regions, freeze-thaw cycles can leads to the disintegration of biochar-soil aggregates 

431 and the release of dissolved organic matter (DOM), thus affecting soil metal leaching and nutrient 
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432 transformation 25, 123. Two common physical aging methods that are used to simulate the aging effects 

433 of temperature and humidity are freeze-thaw cycling and wet-dry cycling.

434 In freeze-thaw cycling studies, selected freezing temperatures range from -70 °C to -15 °C (Table 

435 S4). While the use of extremely low temperatures may accelerate the aging process, higher freezing 

436 temperatures are usually adopted in order to better represent the natural environment. Wet-dry cycles 

437 are known to cause cracking on biochar surfaces, thus leading to changed pore structure 124, 125. This 

438 cracking, however, may be an artifact of oven-drying at high temperature (i.e., up to 60 °C). Moreover, 

439 freeze-thaw and wet-dry aging methods may not be as representative as chemical and biological aging 

440 at mimicking natural aging processes 126. 

441 4.2.2 Chemical aging

442 Three common approaches that are used to accelerate chemical aging are chemical oxidation, 

443 organic acid-induced aging, and photocatalytic oxidation. These methods simulate the effects of 

444 inorganic ions, root exudates, and sunlight irradiation on biochar, respectively. One study has also put 

445 forward a mineral aging method to assess the effects of clay minerals on biochar physicochemical 

446 properties 42. 

447 Peroxide (H2O2) is a widely used oxidant for simulating natural oxidation processes in biochar 

448 aging studies 126.  The use of nitric acid (HNO3) or sulfuric acid (H2SO4) should generally be avoided 

449 to prevent exogenous elements being introduced (e.g., N from HNO3, S from H2SO4) 126. However, 

450 these substances can be used to simulate acid rain, since the major anions in acid rain are NO3
- and 

451 SO4
2- 74. NaOH/H2O2 can be used to simulate oxidation reactions in saline-alkali soils 127. Organic 

452 acids, such as citric acid, malic acid and ethanoic acid, can be used to simulate the role of plant root 

453 exudates in biochar aging 28. Carboxylic groups and the ionizing protons of low molecular weight 
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454 organic acids (LMWOAs) can dissolve minerals in the rhizosphere 35, 128. This deashing process may 

455 improve the pore structure of biochar by clearing pores that are blocked with Ca-, Al-, or Fe- minerals 

456 28, 129. 

457 On the basis of organic acid-induced aging, a novel photocatalytic aging method was recently 

458 proposed. Under UV irradiation, hydroxyl radicals (·OH) with the presence of LMWOAs (e.g., citric 

459 acid, H3Cit) act as the dominant mechanism for biochar degradation and subsequent dissolved organic 

460 matter (DOM) release (Eq. 3-6) 27:

461 H3Cit + O2 + hν→H3Cit ∙ + + O2 ∙ ―        (3)

462 H + + O2 ∙ ― ⇌HO2 ∙                                      (4)

463 2HO2 ∙ →H2O2 + O2                                    (5)

464 H2O2 + hν→2 ∙ OH      (λ < 300 nm)   (6)

465 Considering that Fe is the fourth most abundant element in soil, ferric iron and α-Fe2O3 may also 

466 be added to the citric acid solution with biochar, which accelerates the generation of ·OH through a 

467 Fenton reaction. 

468 4.2.3 Biological aging

469 Microorganisms and plants play important roles for biochar aging. Co-composting and anaerobic 

470 fermentation are relatively quick methods (e.g., several weeks) to observe microbial degradation 

471 effects 29, 86. However, the microbial communities in these systems are quite different from those 

472 found in natural soil environments. Another feasible biological aging method is to culture and 

473 enumerate soil microorganisms and apply them directly to biochar surfaces. In one study, for example, 
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474 biochar was exposed to a microbial inoculum that had been extracted from soil after a period of 

475 incubation 77. 

476 Although mixing biochar with organic acids can mimic the effect of plant exudates on biochar 

477 properties, this chemical aging method overlooks the more complex role of rhizobacteria in biochar 

478 aging. Growing plants in biochar amended soils may be a better aging approach in this sense, but it 

479 can take months or years to accomplish the aging process 130, 131. 

480 5 IMPLICATIONS 

481 5.1 Soil Fertility

482 Long-term aging of biochar improves soil fertility from physical, chemical, and biological aspects. 

483 Firstly, an increase in surface hydrophilicity as a result of oxidation leads to enhanced water retention 

484 for aged biochars 132, 133. For instance, six months of field aging promoted the water retention of rice 

485 husk biochar amended soils, as confirmed by the increase of plant available water content by 20% 

486 during the second growing season of wheat compared with the soils in the first growing season 134. 

487 Aggregate stability is the key factor in terms of soil physical fertility. High stability of soil aggregates 

488 indicates the preservation of soil physical structure for gas exchange, microbial colonization, 

489 germination and rooting of cultivated plants 135-137. Long-term soil aggregate stability improvement 

490 has also been observed after biochar field application. For instance, 3-year application of straw 

491 biochar to a Planosol increased the proportion of stable aggregates by 92% compared with the 

492 unamended soil 138. It has been acknowledged that the initial biochar application would elevate soil 

493 EC via a considerable input of soluble salts 139, 140, thus favoring the aggregation of soil colloids 

494 through double layer suppression 141, 142. In the long run, however, other aggregation mechanisms, 
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495 such as excretion of mucilage and the attachment of hyphae by colonized bacteria and fungi, would 

496 sustain the soil aggregate sustainability despite the leaching of soluble salts 138, 143, 144. 

497 The gradual increase in CEC during aging (Section 3.2) promotes soil fertility chemically. An 

498 increased retention of cationic nutrients, such as Mg2+, K+, and Ca2+, has been observed in many 

499 biochar amended soils that have undergone aging over time 52, 145, 146. The extremely high fertility for 

500 anthropogenic charcoal-rich soils are mainly explained by the increase of CEC during natural aging 

501 52, 117, 147. For instance, the CEC value of the anthropogenic soils collected from an archaeological site 

502 in Brazil was nearly 4 times that of the adjacent soils (i.e., 222 cmol/kg vs 59 cmol/kg) 147. Mild 

503 oxidation results in an increase of oxygen-containing functional groups, thus increasing the surface 

504 charge density of aged biochars. The adsorption of dissolved organic carbon also contributes to CEC 

505 elevation 52, 147. Furthermore, the dissolution of biochar minerals can be a source of plant nutrients 

506 and increase soil fertility directly (Section 2.1) 148. 

507 Current studies suggest that long-term biochar application could also improve soil health via 

508 increasing the diversity of soil microorganisms, which is possibly due to the aforementioned 

509 improvement in soil physical and chemical conditions. The alpha diversity (i.e., the Chao 1 index) of 

510 wheat straw biochar amended soils increased by 27% compared with the unamended soils after 6 

511 years of long-term aging. This is because the formation of stable macroaggregates created an ideal 

512 habitat for microbial colonization 149. A recent meta-analysis also suggest that the microbial diversity 

513 tend to increase with biochar aging 150. One study even observed the colonization of plant-growth 

514 promoting bacteria (PGPBs) strains (formation of biofilms) after 3-year field aging of poplar biochars. 

515 High levels of indole-3-acetic acid (IAA), a typical phytohormone, can be produced (up to 94 mg/L), 

516 suggesting a strong plant growth promoting effect 44.
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517 5.2 Soil remediation

518 Aging may either increase or decrease biochar’s capacity to sorb heavy metals and organic 

519 contaminants (Table S5). Generally, chemically or biologically oxidized biochars tend to adsorb 

520 greater amounts of heavy metals due to enhanced surface complexation between metals and O-

521 containing functional groups 27, 29, 93, 151. Naturally aged biochars tend to have improved metal 

522 adsorption capacity because mild oxidation retains the biochar ash content, thus facilitating 

523 contaminant co-precipitation (Figure 3b). In comparison, physically aged biochars tend to display 

524 decreased adsorption capacity, primarily because they possess low amount of O-containing functional 

525 groups and inorganic minerals are washed off during freeze-thaw or wet-dry cycles, thus leading to 

526 diminished co-precipitation capability 38, 93, 152. The adsorption capacity of chemically aged biochars 

527 is highly dependent on the biochar carbon chemistry. For example, if the proportion of recalcitrant C 

528 is high, the enhanced surface complexation adsorption due to the addition of O-containing functional 

529 groups may be counteracted by decreased contaminant co-precipitation due the removal of minerals. 

530 Biologically aged biochars may display increased adsorption capacity due to mild oxidation, but this 

531 can be counteracted by microbial layers on the biochar surface that block available adsorption sites. 

532 Biochar aging in the field may have diverse influences on metal immobilization performance. 

533 Several studies have reported concerns that biochar did not stabilize heavy metals in the long-term. 

534 For instance, artificial wet-dry aging showed biochar failed to immobilize soil Cu and Pb for 14 aging 

535 cycles ( p > 0.05) 153. However, other studies have suggested that aged biochar may favor long-term 

536 metal stabilization due to the increased number of O-containing functional groups leading to greater 

537 surface complexation (Eq. 7-8) 154, 155  

538 ≡ XOH0 + M2 + =≡ XOM + + H +     (7)
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539 ≡ XOH0 + M2 + =≡ XOHM2 +           (8)

540 where  represents the surface O-containing functional groups,  represents the divalent ≡ XOH0 M2 +

541 metal cations. 

542 Contradicting findings in different studies may owe to the counter effects of O-containing 

543 functional group-assisted immobilization and dissolved organic matter (DOM)-induced mobilization 

544 131, 156. In a 3-year field study, for example, Cd and Cu contaminated soils were stabilized in the long-

545 term by corn straw-derived biochar, while the performance of hardwood-derived biochar reduced 

546 after the second year 157. This finding was attributed to the fact that hardwood biochar contains more 

547 recalcitrant C which resists oxidation aging. The addition of O-containing functional groups on the 

548 hardwood biochar was discovered to be minimal compared to the corn straw biochars. 

549 The addition of O-containing functional groups during biochar aging may affect organic 

550 contaminant adsorption in various ways. Firstly, these functional groups increase the hydrophilicity 

551 of the biochar surface, forming water clusters through hydrogen bonding. These clusters may prevent 

552 hydrophobic contaminants (e.g., naphthalene, paraquat, phthalates) from approaching the biochar 

553 surface 70, 158. Secondly, O-containing functional groups may promote π-π EDA interactions because 

554 of increased π-polarity in biochar aromatic rings 158, 159. Any shift in organic contaminant adsorption 

555 capacity with biochar aging is the combined effect of these two mechanisms. 

556 Ghaffar et al. 158 has found that the π-π EDA interactions overcompensated the inhibiting effects of 

557 water clusters, resulting in higher adsorption capacity towards diethyl phthalate (68.2 mg/g vs 36.3 

558 mg/g) and dibutyl phthalate (216.1 mg/g vs 136.0 mg/g) for chemically oxidized low temperature 

559 biochar (pyrolysis temperature 300 °C). Similarly, Shi et al. 70 noticed that naturally aging resulted in 

560 a substantial increase in herbicide paraquat adsorption capacity (from 1.7 μmol/g to 5.3 μmol/g) for 
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561 biochar pyrolyzed at a low temperature (i.e., 300 °C). However, the adsorption capacity decreased 

562 (from 84.1 μmol/g to 72.0 μmol/g) for biochars produced at a much higher temperature (i.e., 600 °C). 

563 This effect may be explained by the different carbon chemistry of biochars produced at different 

564 temperature. Low-temperature biochars possess more labile C, while higher-temperature chars have 

565 more graphite-sheet structures with high π-electron density (Text S1, Table S1) 9, 160. Therefore, 

566 oxygenation of high-temperature biochar may not cause a significant drop in π-electron density to 

567 support the presence of π-π EDA interactions 159. 

568 Current findings suggest that biochar aging may not favor the immobilization of organic 

569 contaminants. Decreased physical adsorption due to blockage of pore, inhibited hydrophobic 

570 interactions and the mobilizing effect of soil organic matter (SOM) may account for the diminished 

571 stabilization 161, 162. In one study, the phenranthelene adsorption capacity of a soil amended with pig 

572 manure-derived biochar increased after aging 163. This finding was probably because manure-derived 

573 biochar possessed more inorganic minerals (i.e., high ash content) compared with other biochar types 

574 9. The hydrophilic groups of dissolved organic carbon (DOC) may bind with inorganic minerals (to 

575 form cation bridges), while the hydrophobic groups of DOC will be exposed on the outer surface of 

576 biochar, thus favoring the hydrophobic interactions. Therefore, aged biochars could adsorb organic 

577 contaminants in an indirect way (i.e., contaminant-DOC-cation-biochar) 163.

578 It is also noteworthy that biochar aging may favor the microbial degradation of organic 

579 contaminants. After microbial colonization on the external and internal surfaces as a result of 

580 biological aging (Section 2.4), biochar may act as an electron shuttle between these colonized 

581 microorganisms and the organic contaminants. Electrons can be transferred from one microbial cell 

582 to the functional groups with an electron-accepting capacity (e.g., quinone). After that, the sp2-

583 hybridized graphite-like structure of biochar could transport the electron to an electron-donating 
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584 functional groups (e.g., phenolic hydroxyl), which will be accepted by the target contaminant 164-166. 

585 With progressive aging, the presence of more oxygen-containing functional groups (Section 3.2) of 

586 biochars may promote this “electron shuttle” effect. Future studies are needed to verify how biochar 

587 would contribute to the adsorption/degradation of organic contaminants in the long run.

588 5.3 Climate change mitigation 

589 Controversy exists whether biochar field aging can suppress soil greenhouse gas (GHG) emissions 

590 (Figure S6). 167. Evidence from long-term field applications (i.e., >1 year) suggest that biochar can 

591 slightly suppress soil CO2 emissions (reduce CO2 emissons by 2% on average, compared with the 

592 unamended soil) (Figure S6, Table S6). Biochar was the most effective for CO2 emission mitigation 

593 in coarse-textured soils, with significant differences (p<0.05) between soil CO2 emission reduction 

594 rates for sandy loam and clay loam (Figure S6, Table S6). This is probably because biochar are more 

595 likely to form water-stable aggregates in coarse soils 138, 168, which will protect soil organic matter 

596 (SOM) from mineralization 169, 170. 

597 A long-term field trial (9.5 years) revealed a negative priming effect within the rhizosphere in soils 

598 amended with biochar, which was related to the sorption of root exudates by the biochar, hence 

599 minimizing C mineralization through inhibiting the dissolution of SOM. Biochar addition may also 

600 enhance organo-mineral interactions which result in C stabilization and, therefore, lower CO2 

601 emissions (Figure 4). In comparison, a positive priming effect in unamended soil stems from 

602 chemically reduced C (i.e., root exudates) stimulating the degradation of SOM and C derived from 

603 plant roots, thus leading to C mineralization and CO2 emissions. In addition, acidic root exudates also 

604 lead to the dissolution of mineral-bound organic C, thus increasing the bioavailability of SOM 

605 (Figure 4). However, some studies have observed a reverse trend, that long-term biochar application 
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606 led to more CO2 emissions from soil (Table S6). This may stem from the rapid colonization of soil 

607 microorganisms and biological degradation increased the soil labile organic C pools 171 and 

608 accelerated SOC mineralization 172.

609 Long-term aging can also reduce CH4 emissions from soils amended with biochar (Table S6). 

610 Biochar applied to a paddy field could still reduce CH4 emissions by 33% even after 4 years of natural 

611 aging. Interestingly, a higher application rate (i.e., 20 t/ha vs 5 t/ha) will not be equal to higher CH4 

612 emission reduction at the initial stage until the second year. With progressive aging, the positive 

613 effects of biochar application on soil health, such as the enhanced aeration and colonization of 

614 methanotrophs, will be revealed. Another 4-year field study showed that after biochar application, the 

615 ratio of methanogens to methanotrophs increased to a peak in the 3rd year from 4.4 to 9.4 (calculated 

616 by the copy number ratios of mcrA to pmoA) and then subsequently decreased to 4.6 in the last year 

617 173. This temporal pattern was likely associated with biochar aging leading to increased soil porosity 

618 and air introduction, which increased the oxidation-reduction potential (Eh) and, thus, reduced the 

619 abundance of methanogens. 

620 Biochar aging also affects soil N2O emissions by influencing microorganism activity associated 

621 with nitrification and denitrification. A long-term study of the effects of biochar aging (6 years) on 

622 nitrification-denitrification in paddy soil and associated N2/N2O emissions revealed decreased C and 

623 N bioavailability, with decreasing amounts of NO3
- reduction and total N emissions recorded. After 

624 aging for 6 years, the labile C forms in the biochar decreased substantially, while the remaining 

625 recalcitrant C forms could not be utilized by most denitrifying microbes 174. Another study reported 

626 the reverse trend, revealing that biochar aging stimulated N2O emission by 43% in alkaline soils and 

627 by 78% in acid soil 175. The enhanced nitrification and denitrification were the main reason for this 

628 stimulation. 
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629 The underlying mechanisms involved in suppression or stimulation of GHG emission with biochar 

630 aging have not yet been fully addressed. The linkages between biochar characteristics, soil properties, 

631 and microbial communities on C and N transformation rates should be further explored. In particular, 

632 more field studies should be conducted to explore the roles of soil aggregation, microbial colonization, 

633 organic acid and mineral adsorption in GHG emission regulation in-depth.

634

635
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636 Figure 4. Proposed mechanisms for positive rhizosphere priming of soil organic carbon (SOC) 

637 counteracted by biochar-induced negative priming and stabilization of rhizodeposits in a ferralsol 

638 after 9.5 years. Reproduced with permission from Han Weng et al. 167. Copyright 2017 Springer 

639 Nature.

640 6 FINAL CONSIDERATIONS

641 6.1 Risks associated with biochar aging

642 Biochar aging can lead to an acidification effect, which may mobilize soil metals and increase their 

643 bioavailability to soil organisms and plants (Figure 3b). For instance, although fresh biochar 

644 application can reduce Al3+ uptake to plant tissues in acidic soils through a “liming” effect, biochar 

645 acidification due to long-term field aging could increase the exchangeable aluminum fraction 176. Root 

646 exudates (consisting of LMWOAs) which facilitate the dissolution of biochar nutrients (e.g., 

647 K2Ca(SO4)2, K2Mg(PO3)4, CaCO3), may also facilitate the mobilization of potentially toxic elements, 

648 due to the dissolution of Al- and Pb-containing minerals (e.g., Al(H2PO4)3, AlPO4, Pb2(SO4)O, 

649 Pb2P2O7) 28. Biochar aging may also increase the release of DOC leading to nutrient loss and metal 

650 mobilization. 

651 Recent studies have shown that aging could increase the mobility of small (colloidal) biochar 

652 particles in the subsurface, leading to nutrient loss and contaminant migration in biochar amended 

653 soils. It has been suggested that biochar aging can decrease biochar hydrophobicity and shift the Gibbs 

654 free energy from negative to positive 94. This indicates that Lewis acid-base interactions between 

655 biochar colloids and soil would shift from attractive to repulsive (i.e., hydration force) thus enhancing 

656 biochar particle migration. Therefore, aged biochar may pose a risk to groundwater, since heavy 
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657 metals, herbicides, microplastics and even pathogens (e.g., bacteria and viruses) may transport with 

658 biochar colloids 177, 178.

659 6.2 A framework for long-term field applications

660 To better comprehend the role of long-term biochar field application in sustainable agriculture, a 

661 DPSIR (driving forces – pressures – status – impacts – responses) framework is proposed (Figure 5). 

662 Although DPSIR has been commonly used to describe the interactions between society and the 

663 environment, extrapolating this framework to biochar field application can help better understand the 

664 interrelationships between aging-induced changes and soil fertility, remediation, and climate change 

665 mitigation. Firstly, the demand on producing more crops and remediating contaminated soils are the 

666 drivers for biochar application in the field (drivers). After biochar addition, various natural forces, 

667 such as natural oxidation, microbial metabolism, and rainfall events lead to changes in biochar 

668 physicochemical properties (pressures). Consequently, biochar will be oxidized and acidified, and 

669 more O-containing functional groups will be introduced onto its surface. Furthermore, biological 

670 aging of biochar may form a microbial layer, blocking the pores structure (status).

671  Biochar aging can either positively or negatively affect sustainable agriculture. On the one hand, 

672 biochar aging delivers sustained slow release of nutrients that promote soil fertility in the long run. 

673 Enhanced surface complexation also favors the long-term immobilization of potentially toxic soil 

674 metals. Importantly, biochar aging can decrease GHG emissions due to a negative priming effect and 

675 changed abundance of methanogens and methanotrophs. On the other hand, long-term biochar aging 

676 may cause acidification which increases the mobility of potentially toxic soil metals. It has also been 

677 suggested that biochar aging can enhance biochar particle migration and facilitate the transport of 

678 herbicides and other potentially harmful substances (impacts). 

Page 36 of 67

ACS Paragon Plus Environment

Environmental Science & Technology



Page 37

679 To meet the growing demand for increased crop production, soil remediation and climate change 

680 mitigation, chemical pre-application aging treatment may offer a feasible approach to improved 

681 performance (response 1). To better understand the mechanisms associated with long-term aging of 

682 biochar, monitoring of biochar amended soils is necessary (response 2). To predict aging-induced 

683 changes in biochar properties, developing quantitative accelerated aging tests is needed (response 3). 

684

685 Figure 5. A DPSIR framework for long-term biochar applications. Chemical pre-application aging 

686 treatment (pre-aging), long-term monitoring and prediction using quantitative artificial aging 

687 approaches can be regarded as responses to the driving forces, pressures and the states, respectively. 

688 To meet the demand on crop production, soil remediation and climate change mitigation, chemical 

689 pre-application aging treatment can act as an effective tool to produce engineered biochars with 

690 excellent performances (i.e., contaminant immobilization, fertility improvement and GHG 

691 mitigation). To better understand the mechanisms associated with long-term aging of biochar, 

692 monitoring of biochar amended soils is necessary. To predict aging-induced changes in biochar 

693 properties, developing quantitative accelerated aging tests in the laboratory is a feasible way.
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694 6.3 Current challenges and future perspective

695 Long-term monitoring of biochar-amended soils provides direct evidence on how this soil 

696 amendment changes with time. However, due to the time constraints, more studies have developed 

697 artificial aging methods as proxies. Existing methods have mainly focused on single aging 

698 mechanisms, meaning that they do not represent the complex natural conditions of the real world. 

699 Moreover, chemical aging with oxidants tends to cause over-oxidation compared to natural aging, 

700 especially when strong oxidants are used. Furthermore, exogenous elements may be introduced to the 

701 biochar from certain chemicals (e.g., N from HNO3, S from H2SO4) 126. 

702 The effects of artificial physical aging are limited to only the biochar porous structure with no 

703 significant changes to the ultimate properties. The freezing temperature selected for freeze-thaw 

704 cycling can be unrealistic low (e.g., below -20 °C). In addition, the drying part of wet-dry cycles 

705 usually involves higher temperatures (e.g., 60 °C) than that typically occur in nature, leading to 

706 biochar cracking. While biological aging may be much milder than chemical oxidation, the 

707 microorganisms used may follow different metabolism pathways (e.g., co-composting) than a soil 

708 microbiome. 

709 Since natural aging is a complex process that involves simultaneous physical, chemical and 

710 biological aging mechanisms, future studies ought to develop multifaceted advanced aging methods 

711 that combine different mechanisms. New methods could be programed to have variable aging stresses 

712 with time. For example, wet–dry and freeze–thaw cycling could be conducted with variable 

713 temperatures, frequencies, precipitation levels, and freeze periods. Climate change predictions could 

714 be applied to aging methods in order to determine biochar’s resilience 179. When it comes to the 
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715 selection of chemical oxidation agents, we recommend that mild natural oxidants are used (e.g., citric 

716 acid, malic acid as root exudates).

717 Field monitoring is very important to timely assess the function of biochar. It is suggested to carry 

718 out periodically sampling and analysis to verify the performance of biochar in fertility improvement, 

719 contaminant remediation and GHG emissions mitigation. In-situ wireless sensors detecting the 

720 moisture content, pH, Eh, and conductivity of biochar-amended soils can be used to provide real-time 

721 monitoring and help assess the potential environmental impacts on biochar. In addition, advanced 

722 characterization technologies could be coupled with long-term monitoring to provide a timely “health 

723 assessment” of biochar and the amended soil. For example, stable isotope analysis can reveal the 

724 nutrient cycling and GHG mitigation mechanisms of the biochar-amended soils. X-ray absorption 

725 fine spectra can reveal the speciation of elements, including biochar carbon chemistry and the 

726 chemical composition of the adsorbed contaminants, therefore suggesting the effectiveness of 

727 environmental remediation in the long-run.

728 Since biochar can remain stable for hundreds to thousands of years, it is not possible to conduct 

729 field trials that cover the whole natural aging process. Sometimes applying fresh biochar to a certain 

730 field and monitor for dozens of years may also be difficult due to various reasons including the cost, 

731 land-use regulations, natural disasters, etc. Yet it is possible to monitor the aging process using 

732 chrono-sequence approaches, that is, to collect data from different biochar-amended sites with 

733 different ages and analyze their aging characteristics using statistical approaches. 

734 Quantitative artificial aging methods in the lab should be applied to make predictions of biochar’s 

735 long-term performance. However, only limited attempts have been made at providing quantitative 

736 information from accelerated biochar aging. In some studies, biochar aging caused by natural rainfall 
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737 has been quantified through adding calculated amounts of CO2-saturated water to biochar amended 

738 soils 180, 181. For example, assuming the annual precipitation is 2 m, each 1 g of dry soil (density = 1.3 

739 g/cm3) would receive 1.538 mL of pH 5.6 rainwater per year. Therefore, it is reasoned that each cycle 

740 involving a 1:10 mixture (g/mL) of soil and rainwater simulates 6.5 years of H+ addition. Another 

741 suggested quantitative approach combined wet-dry cycles with freeze-thaw cycles to simulate the 

742 different mechanisms of aging 26. Based on historical precipitation and air temperature data, it was 

743 proposed that each complete cycle simulates four months of natural aging. It is evident that such 

744 partially quantitative methods may not provide accurate predictions, since many other factors, such 

745 as sunlight irradiation, chemical oxidation and microbial metabolism are overlooked. Moreover, 

746 verification of laboratory aging studies with representative field data obtained from the long-term 

747 monitoring or chrono-sequence analysis is urgently required. 

748 It is also noteworthy that current studies mainly focus on the aging process in terrestrial ecosystems. 

749 However, many successful attempts have shown that biochar can also be applied in aquatic 

750 ecosystems as an amendment for in situ sediment remediation 182-185. Little research, however, has 

751 investigated the long-term aging effect in these systems 186, 187. Future studies are desperately needed 

752 to explore the aging mechanisms in these aquatic settings.

753 Artificially pre-aged biochars promise to be more effective for field applications than fresh biochar. 

754 In this context, artificial aging acts as a tool to synthesize an engineered biochar product (Figure S5). 

755 For enhanced contaminant immobilization, harsh oxidants, such as H2O2, H2SO4 and HNO3 may be 

756 an effective aging approach (Figure 3d). For soil fertility improvement, modifying biochar with 

757 LMWOAs may be more effective. It is suggested that future studies should explore the applicability 

758 of pre-aged biochars in field trials.
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