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Abstract 7 

Widespread soil contamination threatens living standards and weakens global efforts towards 8 

the Sustainable Development Goals (SDGs). Detailed soil mapping is needed to guide 9 

effective countermeasures and sustainable remediation operations. Here, we review visible 10 

and infrared reflectance spectroscopy (VIRS) based detection methods in combination with 11 

machine learning. To date, proximal, airborne and spaceborne carrier devices have been 12 

employed for soil contamination detection, allowing large areas to be covered at low cost and 13 

with minimal secondary environmental impact. In this way, soil contaminants can be 14 

monitored remotely, either directly or through correlation with soil components (e.g. Fe-15 

oxides, soil organic matter, clay minerals). Observed vegetation reflectance spectra has also 16 

been proven an effective indicator for mapping soil pollution. Calibration models based on 17 

machine learning are used to interpret spectral data and predict soil contamination levels.  18 

The algorithms used for this include partial least squares regression, neural networks, and 19 

random forest. The processes underlying each of these approaches are outlined in this review. 20 

Finally, current challenges and future research directions are explored and discussed.  21 

Keywords: Reflectance spectroscopy; Machine learning; Soil mapping; heavy metals; Soil 22 

pollution 23 
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1 Introduction 24 

Soils, in many places throughout the world, have been contaminated as a result of 25 

anthropogenic activities or natural processes (Hou et al., 2020b). Soil pollution is exacerbated 26 

by soil erosion (Boardman et al., 2019; Liao et al., 2019; Patriche, 2019) and acidification 27 

(Abd El‐Halim and Omae, 2019; Tao et al., 2019). Soil degradation is thus threatening human 28 

health (Zhang et al., 2020), crop growth (Jia et al., 2020), and ecological system (Wang et al., 29 

2020c), which weakens global efforts towards the Sustainable Development Goals (SDGs) 30 

(O'Connor et al., 2020). In response, the United Nations’ Environment Programme (UNEP) 31 

has called on its members to report on soil pollution (UNEA, 2018). China has committed to 32 

conducting a nationwide soil pollution survey every ten years; a 2014 survey reported that 33 

16.1% of the nation’s soils are contaminated, including 19.4% of arable soils (MEE, 2014).  34 

Detailed soil mapping based on survey data is needed to inform and guide policymakers so 35 

that they can introduce effective soil protection measures (Hou and Ok, 2019), and design 36 

green and sustainable remediation strategies (Wang et al., 2020a; Wang et al., 2020b). 37 

Accurate soil mapping, however, poses a huge technical challenge. This is primarily because 38 

soils can be highly heterogeneous (Hu et al., 2017b), with contaminant concentrations 39 

sometimes differing by several orders of magnitude within only a few meters (Han et al., 40 

2018). Subsamples collected from a single sampling location have rendered heavy metal 41 

concentrations (e.g., Pb) that range over orders of magnitude (Brewer et al., 2017). In 42 

regional scale investigations, it is often found that average heavy metal concentrations can 43 

vary by 1~2 orders of magnitude between adjacent sampling sites.  44 

In conventional sampling, soil samples are physically collected from the surveyed land. This 45 

is conducted according to a sampling plan, which is typical, - but not exclusively - a non-46 

targeted grid pattern for regional assessments and targeted samples for site-specific 47 

assessments (Hou et al., 2017). Collected soil samples are subjected to laboratory-based 48 

analytical chemistry. For heavy metals and metalloids (hereafter collectively termed as 49 
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‘heavy metals’), this usually involves acid digestion, pollutant extraction and detection with 50 

an inductively coupled plasma-mass spectrometer (ICP-MS) (Zuzolo et al., 2018). 51 

Geostatistical methods can then be applied to derive a spatial structure, enabling us to predict 52 

contaminant concentrations at un-sampled locations (Cheng et al., 2018; Hou et al., 2017).  53 

This approach, however, relies on the underlying assumptions of geostatistics (i.e. spatial 54 

autocorrelation), which can be incorrect in very heterogeneous soil environments, especially 55 

where there are a diverse range of pollution sources (Hou et al., 2017). Importantly, 56 

geostatistics cannot capture spatial distribution patterns smaller than the distance between 57 

adjacent sampling locations (Goovaerts, 1999). For instance, a national-scale soil quality 58 

investigation is currently being conducted across China in which the sampling grid pattern is 59 

typically set at either 500 x 500 m or 1 x 1 km (MEE, 2017). While this investigation is 60 

expected to provide valuable information regarding levels of soil contamination on a basin-61 

scale (e.g. units of square kilometers), and could render important data for identifying 62 

potential pollution sources (e.g. via geostatistical and/or multivariate statistical analysis), it is 63 

not intended to provide accurate predictions of pollution levels on a parcel level (i.e., sub-64 

hectare resolution) (SC, 2016). For instance, soil samples collected within 200m of highways 65 

can contain high heavy metal contents (Pb, Zn and Cu), but such details could be overlooked 66 

on such a large-scale sampling resolution (Martinez-Carvajal et al., 2019).   67 

Recently, researchers have explored the use of innovative tools that make the detection of soil 68 

contaminants easier and faster, thus enabling higher resolution prediction of contamination 69 

levels (Chakraborty et al., 2015). An emerging method is known as visible and infrared 70 

reflectance spectroscopy (VIRS), which involves in-the-field measurement of contaminants 71 

from either a handheld portable device, unmanned aerial vehicles (UAVs), or even satellites, 72 

for fast remote sensing of large spatial areas (Table 1) (Gholizadeh and Kopackova, 2019; 73 

Gholizadeh et al., 2018). The visible reflectance spectrum (VIS, 380-750 nm), near-infrared 74 

spectrum (NIR, 750-1300 nm), short wave inferred spectrum (SWIR, 1300-2500 nm), mid-75 

infrared spectrum (MIR, 0.25 - 2.5 um) and long-wave infrared spectrum (LWI, 8-12 um) 76 
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have all been applied for VIRS based soil monitoring (Shi et al., 2016). The use of this 77 

sensing technique can accelerate soil pollution mapping at high resolution with less expense 78 

and time than other soil sampling approaches.  79 

As with most analytical detection techniques, VIRS requires calibration to render accurate 80 

contaminant concentrations (Kemper and Sommer, 2002). However, this method requires 81 

considerable data processing before acceptable accuracy can be achieved (Kooistra et al., 82 

2001). Recently, machine learning algorithms have been developed for this purpose (Liu et 83 

al., 2019a; Shan et al., 2018) which enable the measurement of heavy metals as well as 84 

organic contaminants (Douglas et al., 2018b; Liu et al., 2017). Therefore, the overall process 85 

for conducting soil surveys with VIRS detection is rather complicated, as shown in Figure 1. 86 
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 87 

Figure 1. VIRS based detection and machine learning process 88 

A number of recently published reviews have described different aspects of VIRS technology 89 

in detail (e.g. proximal, airborne and spaceborne spectrum) and its suitability for the detection 90 

of different types of contaminant (Gholizadeh and Kopackova, 2019; Gholizadeh et al., 2018; 91 

Shi et al., 2018). However, a detailed overview of how machine learning is used in 92 
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combination with VIRS has been lacking till now. Accordingly, the following topics are 93 

reviewed: 1) an overview of the mechanisms underlying VIRS detection of soil 94 

contamination; 2) machine learning algorithms for interpreting VIRS data; 3) application 95 

attributes. 96 
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Table 1 Soil surveys that have used VIRS 97 

Reference 
Country / 
Region 

# of 
locations 

Area 
(km2) 

Land use Contaminant (concentration range (mg/kg)) 
Lab/field/remote 
detection 

Sensing 
method 

Wavelength 
range (nm) 

Statistical 
analysis 
method 

R2  

(Chakraborty et 
al., 2015) 

USA 108 -- Oil 
production 

TPH (0-326294.48) Lab VNIR  350~2500 PSR; RF 0.78 

(Chakraborty et 
al., 2017) 

India 200 8.1 Vegetable 
farming 

As (2.42-10.37) Lab VNIR 350~2500 ENET 0.97 

(Chen et al., 
2015) 

China 60 -- Wheat 
farming 

Cd (0.37-5.6) Lab VNIR 325~1075 PLSR; BPNN 0.82 

(Choe et al., 
2009) 

Spain 49 -- Gold mining Pb (56.8-152.5); Cu (21.9-252.6); As (52.4-1493.8) Lab / remote VNIR  350~2500 / 
450~2500 

MLR 0.88 

(Douglas et al., 
2018a) 

Nigeria 85 -- Oil 
production 

TPH (16.07-252.59) Lab VNIR 350~2500 PLSR; RF 0.68 

(Kooistra et al., 
2001) 

Netherlands 69 -- Flood plaints Cd, Zn Lab VNIR 400~2500 PLSR 0.95 

(Lassalle et al., 
2018) 

France -- -- Oil 
production 

TPH (0-140000); PAH (0-1600) Lab VNIR 350~2500 LDA -- 

(Liu et al., 2011) China 120~160 -- Rice farming Cu (mean: 54.78), Cd (mean: 0.35) Field VNIR 350~2500 FNN 0.78 

(Al Maliki et al., 
2014) 

Australia 31 -- Various Pb  Lab VNIR 400~2500 PLSR 0.46 

(Okparanma et 
al., 2014a) 

Nigeria 137 -- Oil 
production 

PAH  Lab VNIR 350~2500 PLSR 0.89 

(Pascucci et al., 
2009) 

Italy -- -- Industrial Red mud Field VNIR 
FTIR 

350~2500 
8000~14000 

-- -- 

(Peng et al., 
2016) 

Qatari 300 11,437 Various As (0.4-7.9); Cr (1.9-64.9); Ni (2.3-76.1); Zn (2.8-
130.9); Cu (0.6-28.8); Pb (0.5-14.1) 

Remote Landsat 8 
images 

450~2290 Cubist 0.74 

(Ren et al., 2009) China 33 -- Rice farming As (19.33-403.77), Cu (31.83-190.51) Lab VNIR 350~2500 PLSR 0.62 

(Shi et al., 2014b) China 100 4.5 Rice farming As (10.3-133.4) Lab 
Field 

VNIR 
VNIR 

350~1200 
350~2500 

PLSR 
PLSR 

0.59 
0.50 

(Song et al., 
2012) 

China 61 -- Rice farming Cd (0.081-1.441), Cr (30.990-108.900); Pb (11.120-
89.680), Cu (9.900-55.500); Hg (0.040-0.269); As 
(4.000-16.600) 

Lab VNIR 400~2500 PLSR 0.99 

(Sun and Zhang, 
2017) 

China 74 -- Farming Zn (60.44-4946.60) Lab VNIR 350~2500 PLSR 0.64 

(Tayebi et al., 
2017) 

Iran 120 295 Iron mining Fe (4436.25-271375) Lab VNIR 400~2450 PLSR, PCR 0.29~ 
0.54 

(Todorova et al., Southern 62 5151 Farming Zn (8.54-410.46); Cu (1.68-263.56); Pb (5.60- Lab NIR 700~2500 PLSR 0.38~ 
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Reference 
Country / 
Region 

# of 
locations 

Area 
(km2) 

Land use Contaminant (concentration range (mg/kg)) 
Lab/field/remote 
detection 

Sensing 
method 

Wavelength 
range (nm) 

Statistical 
analysis 
method 

R2  

2014) Bulgaria 82.49); Cr(3.90-150.82); Ni (1.09-118.62) 0.89 

(Wang et al., 
2014) 

China 100 -- Farming As (1.91-21.90); Pb (9.01-37.60); Zn (29.32-
117.49); Cu (8.30-26.38) 

Lab VNIR 350~2500 PLSR 0.49~ 
0.69 

(Webster et al., 
2016) 

Italy, Australia, 
Nigeria 

194 -- Various TPH (0-60000) Lab IR 6000~650 cm-1 PLSR 0.99 

(Wu et al., 2005) China 120 -- -- Hg (0.04-1.26) Lab VNIR 380~2500 PCR 0.69 

(Zhao et al., 
2018) 

China 75 179700 Various Hg (0.018-0.615) Lab VNIR 340~2511 MLR, BPNN 0.92 

(Stazi et al., 
2014) 

Italy 135 108 Farming As (25-1045) Lab VNIR 500-800  PLSR, SVM r: 0.82 

(Pelta et al., 
2019) 

Israel -- -- -- Oil Field  VNIR 400 - 2500 LDA Recall: 
0.93 

Acronyms: Statistical analysis: BPNN= back propagation neural network; ENET=elastic net regression; FNN=fuzzy neural network; MLR=multiple linear regression; PCR=principal component regression; 98 
PLSR=partial least squares regression; PSR=penalized spline regression; RF=random forest regression; SVM=support vector machine; LDA= linear discriminant analysis; Sensing: VNIR= visible near-infrared 99 
reflectance; Contaminants: As=arsenic; Cd=cadmium; Cu=copper; Cr=chromium; Hg=mercury; Ni=nickel; PAH=polycyclic aromatic hydrocarbon; Pb=lead; TPH=total petroleum hydrocarbon; Zn=zinc; 100 
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2 Predictors and underlying mechanisms  101 

The use of VIRS relies on the fact that atoms and molecules absorb and emit 102 

electromagnetic radiation because of electron transition and molecular vibration (Shi 103 

et al., 2018). Identification and quantification of different chemicals can be achieved 104 

based on emission and absorption spectra. In soil contamination monitoring, VIRS 105 

captures reflectance energy from the land surface with the reflectance spectra 106 

informing us of the soil composition (Shi et al., 2014a).  107 

Certain organic soil contaminants, such as polycyclic aromatic hydrocarbons (PAH) 108 

and petroleum hydrocarbons (collectively termed total petroleum hydrocarbons 109 

(TPH)), are often detectable in visible and infrared reflectance spectra  (Chakraborty 110 

et al., 2010; Douglas et al., 2018b). In the case of heavy metals, direct monitoring can 111 

only be achieved at concentrations that rarely occur in the field (e.g., 4000 mg/kg in 112 

the case of Cd) (Liu et al., 2017; Wu et al., 2007; Xia et al., 2007). Fortunately, 113 

interactions between trace levels of heavy metals and more abundant soil components 114 

(e.g. clay, organic matter and Fe oxides) provides an opportunity to detect them 115 

indirectly (Wu et al., 2005; Zhao et al., 2018). Another way of detecting trace levels 116 

of metals is to monitor vegetation spectra because of the influence contaminants exert 117 

on plant physiology (Shi et al., 2016). Specific mechanisms for predicting soil 118 

pollutants are introduced in this section.  119 

2.1 Molecular vibration  120 

In the case of organic compounds, stretching and vibrations of aliphatic (alkyl) 121 

compounds and certain functional groups can often be observed in NIR and MIR 122 

spectra (Douglas et al., 2018a; Forrester et al., 2013). The first overtone of TPH is 123 

observed in the wavelength range of 1600-1820 nm, and the second at 1100-1500 nm. 124 

Observation of the second overtone is more difficult if TPH concentrations are 125 
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relatively low (Hauser et al., 2013). In the case of PAHs, the first overtone of C-H 126 

stretching and deformation of C-H combination, and the second overtone of C-H 127 

stretching in aromatic C-H are observed at wavelengths of 1675 nm, 1417 nm and 128 

1097 nm, respectively (Okparanma et al., 2013). In MIR region, the peaks around 129 

1630-1580 cm-1, 1930-1840 cm-1 and 2060-1930 cm-1 are associated with aromatic 130 

functions (Hobley et al., 2014; Ng et al., 2017).  131 

The concentration of TPH in soil samples collected from oil-contaminated sites can be 132 

determined by Vis-NIR spectrophotometry, with absorption peaks around 1712 nm, 133 

1758nm and 2207 nm (Douglas et al., 2018a). The 1712nm and 1758 nm peaks are in 134 

the first overtone region, which are attributed to the stretching of terminal CH3 and 135 

saturated CH2 in alkyl (Workman and Workman, 2007); the 2207 nm peak is 136 

associated with either amide (C=O) or the stretch and bending caused by crude oil 137 

(Rossel and Behrens, 2010). Okparanma et al. (2014) demonstrated that PAHs in soil 138 

are detectable at a wavelength of 1670 nm, which was attributed to aromatic C-H. The 139 

calibration R2 value for their PAH prediction model was 0.89, and the PRD reached 140 

3.12. 141 

Observed spectra for organic contaminants may overlap with soil organic matter 142 

(SOM), but the presence of SOM would not normally influence TPH detection (Ng et 143 

al., 2017). This is because TPH consists of medium length chains, whereas SOM 144 

mainly composes of long –CH2 chains, and relatively low amounts of –CH3 (Forrester 145 

et al., 2013). For example, it has been found that spiking TPH contaminated soils with 146 

SOM has little effect on observed NIR absorption spectra, but it may affect the MIR 147 

region (especially 1980, 1870, and 1790 cm−1 peaks) (Ng et al., 2017). Forrester et al., 148 

(2013) noted several characteristic absorption peaks in the spectrum of TPH 149 

contaminated soil with the presence of SOM, which were attributed to the vibrational 150 

overtone of terminal methyl in the MIR region. The presence of such peaks can 151 

fortuitously aid TPH detection. 152 
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2.2 Soil properties 153 

2.2.1  Soil organic matter 154 

Soil organic matter (SOM) derives from the breakdown of plant and animal debris. 155 

Many studies have shown that the combination of molecular vibration and overtones 156 

in SOM, including O-H, C-H, C=O groups, can be identified in Vis-NIR spectra 157 

(Kooistra et al., 2001). Because humic and fulvic acids in SOM bind with heavy metal 158 

cations, through COOH, OH, and C=O interactions (Piccolo & Stevenson, 1982), 159 

correlation between SOM and heavy metals levels has been observed (Egli et al., 160 

1999).  161 

Several studies have exploited SOM spectral bands to predict heavy metal 162 

concentrations in soil. For example, at an agricultural site contaminated by polluted 163 

irrigation water, it was found that Cd levels were positively correlated with SOM. 164 

Measurement of 410, 581-626, and 670-690 nm wavelengths were found to be 165 

effective for predicting Cd levels (Chen et al., 2015).  Chakraborty et al. (2017) used 166 

VIS-NIR spectroscopy to determine As concentrations using the absorption feature 167 

associated with O-H and C-H bonds in SOM at a wavelength of around 1290-1310 168 

nm.   169 

2.2.2  Fe-oxides 170 

Iron oxides and hydroxides are widely found in the earth's surface, especially iron 171 

oxyhydroxide (goethite), which forms from weathered iron-rich minerals (Shi et al., 172 

2014a; Wu et al., 2007). Because Fe-oxides are characterized by high surface charge, 173 

large surface area and strong adsorption capacity, they play a crucial role in the fate 174 

and transport of heavy metals in the subsurface (Shuman, 1982).  For this reason, 175 

concentrations of soil heavy metals often correlate to those of Fe-oxides (Wu et al., 176 

2007). VIRS detection is possible because various peaks, including 565, 435, 500 nm 177 
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and bands between 650 and 760 nm, have been associated with Fe-oxides, with 178 

significant correlations identified with soil heavy metals (Xia et al., 2007).  179 

Kemper and Sommer (2002) found that As closely correlated with the reflectance of 180 

Fe oxide related bands at ~550 nm wavelength. Wu et al. (2011) reported that Ni 181 

concentrations can exhibit a negative correlation with iron oxides, especially in the 182 

480-580 nm wavelength region. Chakraborty et al. (2017) reported that As 183 

concentrations had a strong correlation with Fe oxides, meaning that high levels of 184 

regression fitness with diffuse reflectance data could be achieved.  185 

2.2.3  Clay Minerals 186 

Hydroxyl absorption associated with molecular water can be detected at 1400 nm, 187 

1900 nm and 2200 nm, which is associated with clay minerals (Ibrahim et al., 2008; 188 

Kemper and Sommer, 2002; Zhao et al., 2018). Bands at 538 nm wavelength 189 

correspond with the Si-O and Si-O-Al bonds in clay minerals (Song et al., 2012). This 190 

is important for soil contamination surveys because the cation exchange capacity 191 

(CEC) of clays minerals are often high, meaning that heavy metals cations can easily 192 

replace clay mineral cations. Heavy metals tend to sorb to clays by Van der Waals 193 

forces and hydrogen bonds (Kumpiene et al., 2007). 194 

Concentrations of heavy metals in mine tailings can correlate with bands at 1400 nm, 195 

1900 nm and 2200 nm (Kemper and Sommer, 2002). Choe et al. (2009) found that As 196 

levels had a statistically significant (p = 0.006) correlation with reflectance at 2200 197 

nm. The calibration R2 value was 0.56. Song et al. (2012) found that Cu displayed the 198 

highest correlation at 538 nm, which was related to Si-O bands, with an R2 value of 199 

0.551 (p < 0.001). A positive correlation between Hg concentration and adsorption at 200 

2210 nm was reported by Wu et al. (2005).  201 
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 202 

Figure 2 Key wavelengths for soil contamination prediction based on VIRS    203 

2.3 Vegetation 204 

Wavelengths around 540, 690, 730, and 780 nm are closely associated with 205 

chlorophyll-a/-b contents in plant leaves and pigment composition (Blackburn, 1998). 206 

Leaf anatomical features, including mass per area and structure differences (i.e., cell 207 

morphology and parenchyma structure) can present significant correlation with NIR 208 

peaks (Ourcival et al., 2010). By combining VIS, NIR and short wave infrared, the 209 

water content in vegetation can be monitored (Cao et al., 2013). Because pigments, 210 

anatomical features, and plant water content relate to plant health (Shi et al., 2016), 211 

vegetation reflectance can be used for assessing soil contamination levels (Huang et 212 

al., 2009). Changes to the physicochemical and biological properties of soils also 213 

cause an effect on vegetation reflectance (Jiang et al., 2010; Lassalle et al., 2018; 214 

Rosso et al., 2005). 215 

Shi et al. (2014b) explored the reflectance of rice plants to predict soil As 216 

concentrations. It was found that 768, 939, 953, 1132, and 1145 nm wavelengths 217 

correlated to As levels, while 768, 939 and 953 nm wavelengths were related to the 218 

Jo
urn

al 
Pre-

pro
of



Page 14 

leaf area index and chlorophyll density, and 1132 and 1145 nm wavelengths were 219 

associated with the cellular structure, which could be used for indirect measurement 220 

of As levels. A partial least squares regression (PLSR) model was developed with an 221 

R2 of 0.77 (Shi et al., 2014b). Two-band and three-band vegetation indices have been 222 

used to predict As levels by leaner and polymeric regression models. The three-band 223 

index (R716 − R568)/(R552 − R568) is the more effective of these (Shi et al., 2016).  224 

It should be noted that environmental factors unrelated to soil contaminant levels (e.g., 225 

nutrient availability) may affect the health of plants and should be considered when 226 

relying on vegetation reflectance data (Lassalle et al., 2018). Moreover, the sensitivity 227 

to contaminant exposure is different for different plant species (Lassalle et al., 2018; 228 

Sanches et al., 2013).  229 

2.4 Factors affecting VIRS detection  230 

Several factors, including contaminant concentrations and other soil components (e.g. 231 

SOM and clay minerals), affect VIRS detection. Because the contaminant 232 

concentration determines how much energy is absorbed and emitted, the higher the 233 

soil contamination level the easier it is to interpret reflectance spectrum directly 234 

(Okparanma and Mouazen, 2013; Somsubhra et al., 2014). Wu et al. (2007) noted that 235 

when concentrations of Cr and Cu were higher than 4000 mg/kg, adsorption could be 236 

discriminated at wavelengths of around 610 and 830 nm, respectively. However, 237 

detection was not possible at concentrations below 1000 mg/kg. Moreover, when 238 

contaminant concentrations are limited, spectral peaks may shift from their usual 239 

wavelength positions (Somsubhra et al., 2014).  240 

Because most soil heavy metals only exist in trace amounts, they must be monitored 241 

indirectly. The predictability of trace levels of heavy metals varies depends on their in 242 

situ behavior. Kemper and Sommer (2002) found that Pb could be predicted with a 243 
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high R2 value (0.940), followed by Hg and As with R2 values of 0.929 and 0.858, 244 

respectively. The R2 values for Cd, Cu and Zn were much lower (Kemper and 245 

Sommer, 2002). Hou et al. (2019) monitored six heavy metals through hyperspectral 246 

VIRS detection, finding that prediction accuracy decreased in the order of 247 

Ni>Zn>Pb>Cu>Cr>Cd.  248 

In general, detectability relates to the affinity of contaminants to different soil 249 

components (Stazi et al., 2014; Xia et al., 2007). Song et al. (2012) found that the 250 

detection of heavy metals in soil was correlated to their affinity to Fe2O3, Al2O3 and 251 

SOM. (Wu et al., 2007) reported that goethite detection (at 500 nm) was positively 252 

correlated with various heavy metals.  253 

All the predictors mentioned above have certain advantages and disadvantages. 254 

Molecular vibration are widely used to predict organic pollutants, but the key 255 

wavelengths will shift while the pollutant concentration changes (Somsubhra et al., 256 

2014). Soil-property-related predictors (i.e. Fe-oxide and clay minerals) are mainly 257 

used to predict heavy metals in soil, since heavy metals tend to sorb to them and 258 

significant statistic relationship are identified between them (Wu et al., 2007). 259 

However, Douglas et al. (2018a) have observed that correlation between the contents 260 

of soil-property-related predictors (e.g. organic matter and clay) and TPH were not 261 

significant, and have obtained similar conclusion. Therefore, the use of soil-property-262 

related predictor in predicting soil organic concentration is limited. Vegetation can 263 

potentially indicate the extent of soil pollution, which is a crucial indicator especially 264 

when spaceborne spectrometers are employed (Shi et al., 2014b). However, compared 265 

to molecular vibration and soil components, vegetation, incorporates more unstable 266 

factors when used to predict soil pollution, such as their different ability on indicating 267 

pollutants contents (Lassalle et al., 2018). Further exploration are requisite to 268 

interpreting the relationship between vegetation spectrum and soil pollution 269 

concentration.  270 
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3 Remote sensing techniques  271 

Proximal, airborne and spaceborne carrier devices have been employed for VIRS 272 

based soil contamination detection, allowing large areas to be covered at low cost and 273 

with minimal secondary environmental impacts (Figure 3).  274 

 275 

Figure 3 Schematic diagrams of (a) proximal sensing, (b) airborne imaging and (c) a 276 
spaceborne spectrometer (Shi et al., 2014a; Shi et al., 2018) 277 

3.1 Proximal sensing techniques 278 

Proximal soil sensing refers to the collection of soil information close to soil (i.e., 279 

within 2 m) (Rossel et al., 2011). Various proximal VIRS sensors have been 280 

developed that collect physical, chemical and biological information in this way, with 281 

the most common detectors listed in Table 2. The spectral resolutions of those 282 

spectrometers are in the range 0.05-10 nm and 2-8 cm-1 in the Vis-NIR and MIR 283 

range, respectively. In general, higher detection accuracy is achieved with smaller 284 

spectral resolution.  285 

In laboratory-based proximal sensing studies, field soil is transported to the laboratory 286 

for scanning. Chakraborty et al. (2017) evaluated As levels with a portable Vis-NIR 287 

spectroradiometer, reporting a calibration R2 of 0.97. Webster et al. (2016) measured 288 

MIR spectra to assess TPH levels in soil, reporting R2 values of up to 0.99. However, 289 
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outdoor field environments are more complex than those in the laboratory. Multiple 290 

factors affect spectra, including air and soil moisture content. Therefore, R2 values 291 

reported in field studies are usually much lower than those obtained in the laboratory 292 

(Shi et al., 2014b). Nevertheless, Shi et al. (2014b) was able to predict soil As 293 

contamination from vegetation using a portable spectroradiometer. Linear 294 

discriminant analysis (LDA) of vegetation spectra has also been shown to 295 

discriminate water-deficient or oil-contaminated soils in the field (Lassalle et al., 296 

2018).  297 

Table 2 Commonly used portable proximal spectrophotometers 298 

Spectrophotometer  Manufacturer Wavelength 
range 

Spectral resolution Reference 

PSR-3500® VisNIR 
spectroradiometer 

Spectral Evolution, USA  350-2500 nm 3.5 to 10 nm (Chakraborty et 
al., 2017) 

Perkin-Elmer Lambda 900 
spectrophotometer 

Perkin-Elmer, Germany  400-2500 nm UV-VIR: < 0.05 nm 
NIR: < 0.20 nm 

(Song et al., 
2012) 

FieldSpec HandHeld Analytical Spectral 
Devices, 
Inc., USA 

325-1075 nm 3.5 nm at 700 nm (Zhang et al., 
2016) 

LabSpec® 2500 Analytical Spectral 
Devices, 
Inc., USA 

350-2500 nm 10 nm at NIR (Douglas et al., 
2018b) 

FieldSpec® 3 Analytical Spectral 
Devices, 
Inc., USA 

350-2500 nm 3 nm at 700 nm 
10 nm at 1400/2100 nm 

(Wang et al., 
2014) 

FieldSpec® 4 Analytical Spectral 
Devices, 
Inc., USA 

350-2500 nm 3 nm @ 700 nm  
8 nm at 1400/2100 nm 

(Hou et al., 
2019) 

FTIR TENSOR 37 Bruker Optics, Ettlingen, 
Germany 

2500– 
25,000 nm 

4 cm−1 between 3996 to 
599 cm−1 at  

(Ng et al., 2017) 

Nicolet 6700 FT-IR spectrometer Thermo Scientific, USA 2500-20000 nm 1.928 cm− 1 (Song et al., 
2012) 

Hand-held 4100 ExoScan FTIR 
spectrometer 

Agilent Technologies, 
USA 

6000–650 cm-1 8 cm-1 (Webster et al., 
2016) 

3.2 Airborne imaging  299 

Airborne spectrometry is a promising approach to remote sensing. Various 300 

hyperspectral sensors have been equipped to aircraft and unmanned aerial vehicles 301 

(UAVs) (Table 3). For example, airborne imaging was used to predict Pb, Zn and As 302 

by Choe et al. (2008). The distribution of red mud dust has also been observed by 303 

MIVIS based airborne imaging (Pascucci et al., 2009). The spatial resolution of 304 

airborne imaging is determined by the field-of-view (FOV) and altitude of the sensor, 305 

which can be adjusted in accordance with practical demands. It should be noted that 306 
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airborne imaging is affected by factors such as air moisture and vegetation cover, 307 

meaning that successful field surveys are currently limited (Shi et al., 2014a).    308 

Table 3 Hyperspectral imaging sensors for airborne imaging 309 

Hyperspectral 
sensor 

Spectral range 
(nm) 

Spectral 
bands 

Spectral resolution 
(nm) 

Spatial resolution 
 

Reference  

HyMap 450-2480 126 16 
 

5 m (Choe et al., 2008; Franke et al., 
2009) 

ASIA 400-2500 481 3.3 1.5 m (altitude: 1.3 
km) 

(Hillnhuetter et al., 2011) 

AVIRIS 400-2500 224 10 20 m (altitude: 20 
km) 

(Chabrillat et al., 2002) 

CASI 450-2500 -- 10-15 3 m  (Dutkiewicz et al., 2009) 
MIVIS 430-12700 102 9-540 -- (Forzieri et al., 2012) 

3.3 Spaceborne spectrometers 310 

Spaceborne spectrometry is an efficient, economical and increasingly accessible 311 

approach to soil mapping (Guan et al., 2019). Earth observation satellites with high 312 

resolution sensors and high numbers of spectral bands have been launched, including 313 

the European Space Agency’s (ESA’s) Sentinel satellites, NASA’s Landsat program, 314 

and China’s HJ-1 (Gholizadeh et al., 2018; Roy et al., 2014). NASA’s Landsat-8 is 315 

equipped with an operational land imager and thermal infrared sensor, covering the  316 

11 wavelength bands (4 visible, 1 near-infrared, 2 shortwave infrared, 1 panchromatic, 317 

1 cirrus and 2 thermal infrared) (Roy et al., 2014). ESA’s Sentinel-2 satellite has 13 318 

bands, covering 443 to 2190 nm wavelength (BERGER et al., 2012). The HJ-1 319 

satellite is equipped with a hyperspectral sensor with 115 spectral bands in the range 320 

of 450-950 nm (Liu et al., 2015). 321 

Peng et al. (2016) and Guan et al. (2019) used the spectral bands of the Landsat-8 322 

satellite, involving brightness and normalized difference vegetation index (NDVI)) 323 

with land features (e.g. elevation and slope), to predict the concentrations of As, Cr, 324 

Ni, Pb and Zn. Liu et al. (2019b) used spectral data from the HJ-1 satellite to predict 325 

soil concentrations of Cd through multiple nonlinear regression, achieving an R2 of 326 

0.81.  327 
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Advanced hyperspectral satellites that will provide higher accuracy are due to be 328 

launched in the coming years, including the HyspIRI satellite with 214 spectral bands, 329 

the CCRSS satellite with 328 spectral bands and the EnMAP satellite with 242 330 

spectral bands (Gholizadeh et al., 2018).  331 

4 Spectral data analysis by machine learning 332 

4.1 Regression 333 

Regression algorithms are often used to interpret spectral data (Chakraborty et al., 334 

2017). For example, univariable regression is used to predict independent variables 335 

from a single dependent variable. Shi et al. (2016) used this approach to predict soil 336 

As levels (R2 = 0.56). However, as multiple dependent variables can usually be 337 

extracted from spectral data, multiple linear regression (MLR) is more commonly 338 

used. Compared to other advanced multivariate algorithms, MLR is easier to perform 339 

and interpret. However, MLR prediction accuracy is reduced when predictor variables 340 

involve non-linear relationships. Kemper and Sommer (2002) employed MLR to 341 

predict the concentration of heavy metals from spectral data (R2 = 0.234-0.957). Ng et 342 

al. (2017) used this approach to predict soil TPH levels (R2 = 0.71). 343 

The most used techniques for interpreting spectral data are principle component 344 

regression (PCR) and partial least squares regression (PLSR). PCR is a two-step 345 

technique in which predictor variables are transformed into principal components by 346 

principal component analysis (PCA), which are then inputted as predictors into MLR 347 

(Wu et al., 2005). The first step allows multi-linear problems to be solved. As an 348 

enhancement to PCR, PLSR has a similar structure but also takes response variables 349 

into account in the PCA step. Therefore, PLSR not only handles multi-linear data but 350 

also allows for the number of variables to exceeds that of the samples (Shi et al., 351 

2014b; Wang et al., 2014). Douglas et al. (2018b) and Webster et al. (2016) used 352 

Jo
urn

al 
Pre-

pro
of



Page 20 

PLSR to predict soil TPH levels with Vis-NIR and MIR spectral data, reporting R2 353 

values of 0.63 and 0.99, respectively. 354 

Other regression approaches include elastic net regression (ENR) and penalized spline 355 

regression (PSR). ENR overcomes the problem of overfitting, whereas PSR is able to 356 

solve problems of high-dimensional data analysis. Both ENR and PSR have been 357 

utilized to predict soil As levels with reported R2 values of 0.97 and 0.89, respectively 358 

(Chakraborty et al., 2017).      359 

4.2 Neural network 360 

The neural network is composed of artificial neurons which form layers that further 361 

link into connections, thus mimicking the human brain (Laberge et al., 2000). This 362 

non-linear method has attracted extensive interest in multiple fields (Abedinia et al., 363 

2018; Park et al., 2011). In soil surveys, back-propagation neural network (BPNN) 364 

has obtained attention for its ability to interpret spectral data more effectively than 365 

partial least squares regression (PLSR) (Chen et al., 2015; Zhao et al., 2018). 366 

Algorithm optimization of BPNN has been explored to improve predictive accuracy. 367 

For example, Zhao et al. (2018) used BPNN with a genetic algorithm (GA) to predict 368 

soil Hg levels. A combination of particle swarm optimization and BPNN (PSO-BPNN) 369 

mitigates slow convergence and avoids trapping in local minima. (Liu et al., 2019b) 370 

used PSO-BPNN to predict concentrations of Hg, Cd and As with higher accuracy 371 

than primary BPNN. Tian et al. (2019) optimized BPNN with the combination of GA 372 

and the ant colony algorithm to predict heavy metal concentration, with a reported R2 373 

value for Cr detection (0.87) higher than for primary BPNN (0.55). 374 
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4.3 Random forest  375 

Random forest (RF) evolved from the decision tree algorithm, a classical and intuitive 376 

algorithm that exploits top-down and binary splits to handle regression and 377 

classification problems (Ellis et al., 2014). Because this can lead to high variance and 378 

overfilling, bagging (bootstrapping aggregation) has been included. A variety of 379 

decision trees are “trained” on extracted subsamples and the average value of splitting 380 

points. However, trees generated by bagging may correlate with each other because 381 

they are trained with similar samples. RF was developed to de-correlate trees, which 382 

selects a subsample of a feature set for each tree, compelling trees to consider all 383 

features (Svetnik et al., 2003). It has been increasingly used in environmental 384 

applications and achieved superior results in comparison with other predictive 385 

techniques (Zhu et al., 2020a; Zhu et al., 2020b). 386 

Douglas et al. (2018a) used RF to predict the concentration of TPH in soil using Vis-387 

NIR data. The reported R2 value and PRD were 0.68 and 1.85, which was higher than 388 

that for PLSR (0.54 and 1.51, respectively). Wei et al. (2019)used RF to determine 389 

soil As concentrations (R2 = 0.95). Chakraborty et al. (2017) reported that the 390 

performance of RF in predicting As levels was higher than PSR.  391 

4.4 Other algorithms 392 

Support vector machine (SVM) and linear discriminate analysis (LDA) algorithms 393 

have also been explored in several studies (Lassalle et al., 2018; Shan et al., 2018). 394 

SVM is an effective and classical classification algorithm, which can also be used for 395 

regression. The LDA method is like linear regression but involves data classification. 396 

Stazi et al. (2014) used SVM to predict the concentrations of As in agricultural soil 397 

with 18 variables (R2 = 0.82 and PRD = 2.03). Wei et al. (2019) reported As detection 398 

with an R2 value of 0.91 using 5 feature variables.    399 
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5 Data acquisition 400 

5.1 Soil data collection 401 

Because VIRS requires a calibration model, both soil contaminant concentrations (e.g., 402 

traditional physical sampling) and corresponding VIRS spectra data are 403 

simultaneously collected to build a calibration model. Since soil properties can vary 404 

significantly, soil samples may be needed to build unique calibration models for each 405 

location studied. In some studies, soil samples have been prepared in the laboratory 406 

with spiked soil samples (Pelta and Ben-Dor, 2019). There are no existing studies to 407 

indicate the effect of soil sampling depth, however, it should be noted that airborne 408 

and spaceborne spectrometers will only observe surface soils. Therefore, soil 409 

sampling depth is usually limited to less than 20 cm (Chakraborty et al., 2010; Hou et 410 

al., 2019).   411 

5.2 Spectral measurement 412 

Proximal sensing in the laboratory requires soil samples to be processed. Firstly, 413 

debris, organisms and large gravel are removed before sieving (typically 2 mm mesh) 414 

(Antonucci et al., 2012; Song et al., 2012). Some studies involved grinding soil to 38-415 

840 μm particle size (Liu et al., 2019b). The soil is then dried for 1-14 days, either at 416 

room temperature or at a constant oven temperature (i.e., 40 ℃) (Liu et al., 2019b; 417 

Song et al., 2012). Some studies applied higher temperatures to speed up drying (e.g. 418 

65 ℃ or 105 ℃), but it should be noted that this could remove any volatile content 419 

from the soil (Douglas et al., 2018b; Stazi et al., 2014).  420 

Operational parameters used when scanning soil samples in the laboratory are detailed 421 

in Table 4.  In this process, the sample is placed on smooth surface (e.g., a glass slide 422 

or petri dish) to diffuse reflection and gain a good signal-to-noise ratio (Okparanma et 423 

al., 2013). Samples can be smoothed by saturating with distilled water to make a 424 
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slurry before drying (usually at 40 °C) (Wu et al., 2005)or simply smoothed over 425 

manually (Liu et al., 2019b). Measurements are conducted in a darkroom with a light 426 

source. In the case of Vis-NIR spectral measurements, the light source could be a 427 

tungsten filament lamp or a tungsten halogen lamp with a wavelength of 320-2500 nm 428 

(Sridhar et al., 2011). The light source is normally placed 30-70 cm above the soil 429 

(Shen et al., 2019) and the detector a distance of 10-120 cm (Pelta and Ben-Dor, 2019; 430 

Wei et al., 2019). Keeping the light source and detector in specific distances from soil 431 

ensures that the light can evenly irradiate the surface of the measured object, and 432 

maintains the sample in the FOV of the detector (Shi et al., 2014a). Before 433 

measurement, background adsorption is carried out with a white reference material, 434 

such as Spectralon, polytetrafluoroethylene (PTFE) or BaSO4 (Kooistra et al., 2001). 435 

Additionally, each sample should be measured 3-10 times to reduce error (Douglas et 436 

al., 2018a).   437 

Table 4 Operational parameters used in the laboratory   438 

Soil particle 
size  
(μm) 

Lamp 
power 
(W) 

lamp to 
soil  
(cm) 

Detector 
to soil  
(cm) 

Parallel 
test 

Spectral calibration  Reference  

840  500 -- -- 5 white Spectralon (Liu et al., 2019b) 
-- 500 40 15 10 white Spectralon panel (Wang et al., 

2014) 
150 1000 50 15 -- -- (Hou et al., 2019) 
< 2000 50 -- -- 10 -- (Zhao et al., 2018) 
-- 50 60 -- 5 white BaSO4 panel (Todorova et al., 

2014) 
2000 -- 30 -- 10 white BaSO4 panel (Ren et al., 2009) 
-- 5 -- -- 4 NIST certified white reference (Chakraborty et 

al., 2017) 
149 50 40 -- 10 -- (Chen et al., 2015) 

There are two main approaches for spectral measurement in the field: portable 439 

spectral devices and airborne devices (see Section 3). Solar light intensity plays an 440 

important role in the quality of spectral data in the field. Because clouds reflect and 441 

absorb light at certain wavelengths, cloud cover should be minimal. Most studies are 442 

conducted with zero cloud cover and good visibility (e.g., 60 km) (Götze et al., 2016). 443 

Rainfall and high humidity (which condenses into water films) should be avoided 444 

(Soriano-Disla et al., 2014).  445 
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5.3 Soil spectral libraries 446 

To expand the use of VIRS in soil monitoring, international efforts are being made to 447 

establish spectral libraries. The first was established by the US National Soil Survey 448 

Center in 2006, which contains 3768 samples from the US and 416 samples from 449 

countries in Africa (125), Europe (112), Asia (104) and the Americas (75) (Brown et 450 

al., 2006). Other institutions have published data including 21,500 spectra collected 451 

from 4000 soil profiles in Australia, and the spectra of 20,000 samples collected 452 

across Europe (Antoine et al., 2013; Rossel and Webster, 2012). In recent years, 453 

Viscarra et al., (2016) compiled the Vis-NIR spectra of 23,631 soil samples collected 454 

from 35 institutions around the world (Rossel et al., 2016).  455 

6 Statistical analysis methods and modeling strategies 456 

6.1 Data pre-processing  457 

Data pre-processing is used to render data valid for model building. Kooistra et al. 458 

(2001) reported that prediction accuracy and model quality was vastly improved after 459 

pre-processing was carried out. Pre-processing usually involves outlier removal, noise 460 

minimization and curve smoothing (Stazi et al., 2014).  461 

Data outliers may originate from the sample itself or from experimental operations. 462 

Removal of outliners is one of the keys to establishing stable and effective predictive 463 

models. Outliers ought to be identified using a systematic method, such as principal 464 

component analysis (PCA) (Shi et al., 2014b), with outliers identified by a score 465 

matrix. Chakraborty et al. (2017) used PCA to pre-process spectral data, identifying 466 

10 outliers. 467 

A normal distribution is a prerequisite for some statistical methods, such as Pearson 468 

correlation analysis. A normality test can be used to check data normality (e.g., a 469 
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Shapiro–Wilk test and Kolmogorov-Smirnov test showing a p of > 0.05). If the data is 470 

non-normal, transformations such as Box-Cox transformation and logarithmic 471 

transformation can be applied (Chakraborty et al., 2015; Chakraborty et al., 2010).   472 

Noise in collected spectra will often relate to the roughness of the surveyed land or 473 

the observation angle (Zhao et al., 2018). Bands showing large amounts of noise can 474 

be removed (e.g., the initial and tail bands) (Hou et al., 2019; Pelta et al., 2019). 475 

Additionally, mathematical transformation methods can be adopted to reduce noise 476 

levels (Table 5).  477 

Table 5 Spectral transformation methods 478 

Name  Objective 
Mean centering Eliminate the absolute absorption value of the spectrum, increase the difference between the sample spectra, and 

improve the robustness and prediction ability of the model 
Orthogonal signal correction  Filter out signals that are not related to the concentration of the target pollutant in the spectrum 
Standard Normal Variate (SNV) Eliminate spectral errors caused by solid particle size and surface scattering 
Multiplicative Scatter Correction Same as SNV 
Savitzky-Golay smoothing filter  Smooth the spectral curve to reduce noise 
Derivative (first derivation and 
second derivation)  

Correct the spectral baseline, eliminate interference from other backgrounds, and improve spectral resolution. 

The relative effectiveness of data pre-processing has been analyzed in several studies. 479 

Liu et al. (2017) reported that reflectance data processed by logarithm and continuous 480 

removal increased the level of correlation with heavy metals. Chen et al. (2015) 481 

compared six pre-processing methods, finding that orthogonal signal correction most 482 

effectively reduced noise and improved prediction accuracy. However, reported 483 

optimal preprocessing methods have varied among studies, owing to the specific 484 

features of the spectral data (Chen et al., 2015; Kooistra et al., 2001). In practice, the 485 

use of multiple data preprocessing methods may be needed to determine the optimal 486 

approach. 487 
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6.2 Variable construction 488 

Variables can be classified as two types: 1) raw or preprocessed spectral feature bands; 489 

2) combined spectral data. The first type provides the most representative information 490 

and higher model quality.  491 

There are two methods for selecting feature bands: 1) linear regression; or 2) PCA. 492 

For linear regression, reflectance correlation coefficients are calculated, with the 493 

bands of highest value used as feature variables. The magnitude of correlation 494 

coefficients can depend on the pre-processing method applied (Liu et al., 2017). In 495 

PCA, uncorrelated principal variables are extracted explaining the highest variance. 496 

Calibration models such as PCR and PSLR are constructed based on principal 497 

components. Other prediction methods also use principal components as prediction 498 

variables (e.g. RF) (Douglas et al., 2018a). The number of feature bands used for 499 

modeling can range from one to hundreds (Liu et al., 2019b). Calibration R2 values 500 

will tend to increase as the number of feature variable increases, but overfitting may 501 

occur at higher numbers. As a rule of thumb, the optimal number of variables is 502 

around one third of the number of samples. 503 

Combined spectral data can also serve as variables. For this, correlation analysis can 504 

be used to select the most effective combination. Liu et al. (2019a) selected two 505 

combinations of spectral data to predict Cd, Hg and As levels in soil. Some commonly 506 

used spectral indexes for vegetation, such as the normalized difference vegetation 507 

index (NDVI) and the infrared percentage vegetation index (IPVI), have been 508 

identified as efficient predictors when using vegetation reflectance data (Shi et al., 509 

2014a). For example, Shi et al. (2016) employed different vegetation indices to 510 

predict As levels (R2 = 0.75).  511 
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6.3 Model selection 512 

Various models for interpreting spectral data were introduced in Section 4. The model 513 

function should be considered firstly in model selection. If the underlying relationship 514 

is non-linear, algorithms such as PSR, neural network, RF should be used. PLSR and 515 

stepwise regression could help to diminish the risk of collinearity (Chen et al., 2015; 516 

Somsubhra et al., 2014). Model parameters should be considered carefully to avoid 517 

overfitting. For instance, in the neural network algorithm, the number of neurons in 518 

each hidden layer, the number of hidden lays and the selection of propagation 519 

functions can influence model accuracy. Overfitting can occur if the model is too 520 

complex. Models with different combinations of parameters should be built, tested 521 

and compared. Additionally, models can be optimized with other advanced algorithms, 522 

including the genetic, particle swarm optimization, least absolute shrinkage and 523 

selection operator algorithms (Liu et al., 2019a; Wang et al., 2014). Such algorithms 524 

help improve solution searching and avoid the problem of overfitting. 525 

6.4 Model validation  526 

Model validation is required to determine prediction error and evaluate model quality. 527 

After initial data pre-processing, it is useful to split the data into two separate sets: one 528 

set for model training and another for validation (Okparanma et al., 2014b). Usually, 529 

around 70% of data is used for training and 30% for validation (Table 6).  530 

Model performance can be evaluated systematically using cross-validation techniques. 531 

In k-fold cross-validation, the data is randomly divided into k equal sized subsamples, 532 

with one subsample retained as validation data. The remaining k−1 subsamples are 533 

used as training data. The process is repeated k times, with each subsample used once 534 

as the validation subset. The average error serves as the performance parameter (Liu 535 

et al., 2017). The leave-one-out validation procedure is utilized when the number of 536 
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available samples is small (Ren et al., 2009). In this approach, n-1 samples are 537 

adopted to train the model and the remaining sample used for validation. The 538 

procedure is repeated n times and the root mean square error of cross-validation 539 

(RMSECV) serves as the performance parameter. Kooistra et al. (2001) used the 540 

leave-one-out approach to validate a PLS model with 69 samples.  541 

Table 6 summary of data use in selected studies 542 

Training/validation sets Corresponding statistical methods References 
75% (n=81) / 25% (n=27) PLSR, RF, PSR (Chakraborty et al., 

2015) 
70% (n=133) / 30% (n=57) RF, PSR, ENET (Chakraborty et al., 

2017) 
75% (n=225) / 25% (n=75) Cubist (Peng et al., 2016) 
66% (n=63) / 34% (n=32) PLSR (Shi et al., 2014b) 
80% (n=96) / 20% (n=24) PLSR, PCR (Tayebi et al., 2017) 
78%(n=107)/22%(n=30) PLSR (Okparanma et al., 

2014a) 
75% (n=101)/25%(n=34) PLSR, SVM (Stazi et al., 2014) 
67% (n=50)/33% (n=75) MLR, BPNN, GA-BPNN (Zhao et al., 2018) 

Acronyms: GA-BPNN= genetic algorithm optimization of back propagation neural network; ENET=elastic net regression; 543 

MLR=multiple linear regression; PCR=principal component regression; PLSR=partial least squares regression; PSR=penalized 544 

spline regression; RF=random forest regression; SVM=support vector machine;  545 

6.5 Model quality assessment 546 

Model quality assessment is a key process in machine learning. Determination 547 

coefficients (R2), the root mean square error (RMSE), residual prediction deviation 548 

(RPD), the ratio of performance to inter-quartile distance (RPIQ), standard error (SE) 549 

and bias, can all be used to quantitatively assess model quality (Table 7).  550 

The R2 value is the most widely used parameter for assessing model quality, which is 551 

the proportion of the variance in a predicted value (dependent variable) that is 552 

predictable from the independent variable. The closer R2 is to 1, the better the fit of 553 

the model. Reported R2 values in the reviewed literature ranged from 0.11 to 0.99. 554 

The RMSE value is the standard deviation of the residuals (prediction errors). The 555 

smaller the RMSE, the higher the accuracy of the model. PRD is a goodness-of-fit 556 
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parameter that is defined as the standard deviation divided by the RMSE, with values 557 

greater than 1.8 considered good (Douglas, Nawar, Alamar, et al., 2018; R. A. V. 558 

Rossel, Walvoort, Mcbratney, Janik, & Skjemstad, 2006). PRD values reported in the 559 

reviewed studies ranged from 0.51 to 6.23 (Somsubhra Chakraborty et al., 2017; 560 

Kemper & Sommer, 2002).  561 

Table 7 Evaluation parameters for determining model quality 562 

Parameters  Equations 

r (correlation coefficient) r = ∑ (��,�	
 − ���	
)(�� − ��)���∑ (��,�	
 − ���	
)��� �∑ (�� − ��)���  

R2 �� = ∑ (��,�	
 − ��)����∑ (���� − ��)� = 1 − ∑ (�� − ��,�	
)����∑ (���� − ��)�  

SE (standard error) SE = � 1� − 1 � (�� − ��,�	
)��
�  

RMSE (Root mean square effort) RMSE = �∑ ���,��� − y�!�"� n  

RPD 
RPD = ��,�	
 − y�

�∑ �y�,��� − y�!�"� n
 

RSD (relative standard deviation) RSD = SDmean 

Bias Bias = � ��,�	
 − y�n
"
�

 

�� is the observed value of sample i; ��,�	
 is the predicted value of sample i; �� is the average of observed value; ���	
  is the 563 

average of predicted value.  564 

7 Summary and future research directions 565 

Soil contamination has become a global issue, and sustainable remediation strategies 566 

rely upon detailed mapping of soil pollutants (Hou, 2020; Hou et al., 2020a). VIRS 567 

combined with machine learning has been identified as a promising approach for 568 

detecting soil contamination remotely. Organic contaminants, including TPH and 569 

PAH, can be detected by VIRS due to characteristic molecular vibration and 570 

stretching (Song et al., 2012; Webster et al., 2016). Heavy metals are detected by 571 

Jo
urn

al 
Pre-

pro
of



Page 30 

proxy, exploiting their relationships with various soil constituents, including SOM, 572 

Fe-oxides and clay minerals. Because soil contaminants can affect plant physiology, 573 

vegetation spectra can also be used to predict soil contamination levels (Shi et al., 574 

2014b; Wu et al., 2005).  575 

Proximal, airborne and spaceborne sensors have all been used to collect VIRS spectral 576 

data, with the ability to assess large areas in little time (Gholizadeh et al., 2018). After 577 

collection, VIRS data requires preprocessing to diminish noise and remove the 578 

outliers, which can be achieved with various mathematical methods. Traditional 579 

physical sampling is also required for model calibration and validation. Various 580 

machine learning algorithms have been used in spectral data interpretation, including 581 

regression, neural network, and random forest. These methods can be improved by 582 

other advanced algorithms, such as genetic algorithms. However, challenges still exist, 583 

and further research is needed in various areas of VIRS based remote sensing in 584 

combination with machine learning for soil contamination mapping. 585 

Data collected by VIRS strongly relates to local soil properties (Rathod et al., 2013). 586 

The need to calibrate with site specific samples is identified as a big drawback. 587 

Libraries of soil spectra collected throughout the world are being established by 588 

different institutions (Brown et al., 2006). As these libraries are furnished with greater 589 

abundance of spectra data, further research is needed to determine if VIRS analysis 590 

can be adequately calibrated with cataloged spectral data when surveying unsampled 591 

sites. 592 

VIRS could also serve as a complementary method to small-scale site investigations. 593 

The sampling size could be reduced to predict contaminant levels at specific sites. 594 

Although models would need to be built for contaminant prediction, this would be 595 

attractive due to the low-cost of model building compared to traditional sampling 596 
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techniques. A drawback would be that VIRS is limited to surface monitoring, while 597 

contaminated land site investigations are often concerned with the subsurface.   598 

Combining VIRS with complementary technology may prove a promising research 599 

direction. Recent studies that have lead in this direction include Hu et al. (2017a), 600 

who explored a method involving VIRS combined with X-ray fluorescence (XRF) to 601 

measure heavy metals rapidly. Xu et al. (2019) also utilized XRF and VIRS, 602 

combined with the strategy of outer-product analysis and Granger–Ramanathan 603 

averaging, to predict Cd contamination in soil and obtained an acceptable prediction 604 

accuracy. Chakraborty et al. (2017) combined Vis-NIR diffuse reflectance 605 

spectrometry with geostatistical analysis to identify As hotspots. Additionally, land 606 

feature variables correlating to pollutant pathways could be used in combination with 607 

spectral data. For instance, topography, land use type, distance to factories could be 608 

incorporated.  609 

Although several studies have shown that VIRS could be used for soil contamination 610 

mapping, the majority have been conducted in the laboratory (Shi et al., 2014a). 611 

Field-based studies have not proved as accurate as those in the laboratory. The 612 

presence of vegetation, cloud and moisture can significantly influence the accuracy of 613 

VIRS (Shi et al., 2014b). This challenge might be solved by advanced sensors with 614 

higher signal-to-noise ratios and more effective spectral data preprocessing and 615 

calibration with machine learning algorithms. 616 

Spaceborne spectrometry enables us to achieve long-term temporal and large-scale 617 

spatial monitoring of soil health. However, obstacles such as cloud and vegetation 618 

coverage need to be dealt with. There have been a limited number of studies that 619 

attempted to explore soil contamination through vegetation spectral data, most of 620 

those were based on a single vegetation species (Lassalle et al., 2018; Shi et al., 2016). 621 
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The information provided by spectral data may vary from both vegetation species and 622 

their growth stage, which should be further investigated.  623 
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Highlight 

VIRS based detection serves as a sustainable way in mapping soil pollution. 

The combination of machine learning enables VIRS to provide an accurate result.  

Heavy metals and organic pollutants in soil can be monitored this way. 

Fe-oxide, clay minerals and soil organic matters are influential factors. 

Field-based study is requisite to improve this method.   
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