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Abstract  16 

Worldwide, there is a trend towards increased herd sizes and the animal to 17 

stockman ratio is increasing within the beef and dairy sectors, thus the time available 18 

to monitoring individual animals is reducing. The behaviour of cows is known to 19 

change in the hours prior to parturition, e.g. less time ruminating and eating, and 20 

increased activity level and tail raise events. These behaviours can be monitored 21 

non-invasively using animal mounted sensors. Thus behavioural traits are ideal 22 

variables for the prediction of calving. This study explored the potential of two sensor 23 

technologies for their capabilities in predicting when calf expulsion should be 24 

expected. Two trials were conducted at separate locations: i) beef cows (n = 144) 25 

and (ii) dairy cows (n = 110). Two sensors were deployed on each cow: 1) Afimilk 26 

Silent Herdsman (SHM) collars monitoring time spent ruminating (RUM), eating 27 

(EAT) and the relative activity level (ACT) of the cow and 2) tail mounted Axivity 28 

accelerometers to detect tail-raise events (TAIL). The exact time the calf was 29 

expelled from the cow was determined by viewing closed-circuit television camera 30 

footage. Machine learning random forest (RF) algorithms were developed to predict 31 

the when calf expulsion should be expected using single sensor variables and by 32 

integrating multiple sensor data-streams. The performance of the models were 33 

tested by the Matthew’s Correlation Coefficient (MCC), the area under the curve and 34 

the sensitivity and specificity of predictions. The TAIL model was slightly better at 35 

predicting calving within a five hour window for beef cows (MCC = 0.31) than for 36 

dairy cows (MCC = 0.29). The TAIL+RUM+EAT models were equally as good at 37 

predicting calving within a five hour window for beef and dairy cows (MCC = 0.32 for 38 

both models). Combining data-streams from SHM and tail sensors did not 39 

substantially improve model performance over tail sensors alone therefor hour-by-40 



3 
 

hour algorithms for the prediction of the time of calf expulsion were developed using 41 

tail sensor data. Optimal classification occurred at two hours prior to calving for both 42 

beef (MCC = 0.29) and dairy cows (MCC = 0.25). This study has shown that tail 43 

sensors alone are adequate for the prediction of parturition and that the optimal time 44 

for prediction is two hours before expulsion of the calf. 45 

Keywords: precision livestock farming, parturition, bovine, random forest, animal-46 

mounted sensors 47 

 48 

Implications: The availability of non-invasive sensors to monitor cattle behaviour 49 

provide opportunities for translation of current behaviour and technology validation 50 

research into a multi-sensor platform to predict when a cow will calf. Four behaviours 51 

were monitored in this trial: time spent ruminating, time spent eating, relative activity 52 

and tail raising. Using machine learning techniques, tail raising was found to be the 53 

best single predictor of time to calving with optimum prediction two hours prior to 54 

calving. Combining tail raising with time spent eating and time spent ruminating 55 

slightly increased predictive performance of the model.   56 
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Introduction 57 

There is a global trend towards increased herd sizes. For instance, in the UK, the 58 

average dairy herd size has increased 2.7% since 2014 and the average beef herd 59 

size by 1.2% (AHDB, 2018). If available labour does not increase in line with herd 60 

size, this can result in the cow to stockman ratio increasing and in less time being 61 

available for monitoring of individual animals. In order to optimise the production 62 

efficiency of the UK livestock sector there is a requirement for the development and 63 

use of cost-effective animal monitoring solutions to inform on the health and 64 

productive status of individual animals.  65 

Dystocia is a considerable problem within beef and dairy systems. Internationally, 66 

the prevalence of dystocia in dairy cows typically varies between 2 and 7% of 67 

calvings, but is as high as 14% in the USA (Mee, 2008). In the UK, 6.9% of dairy 68 

heifers experience serious difficulties during calving (Rumph and Faust, 2006). 69 

Reports of assisted calvings range from 10 – 50% (Mee, 2008), with primiparous 70 

cows more commonly experiencing difficulties (Lombard et al, 2007). In the beef 71 

sector, between 1 and 8% of cows experience difficult calvings, require surgical 72 

intervention or have stillbirths (Nix et al 1998; Phocas and Laloë, 2003; Eriksson et 73 

al, 2004; De Amicis et al, 2018). 74 

The costs associated with mild and severe cases of dystocia in the dairy sector are 75 

estimated at between £110 and £400 due to milk loss (McGuirk et al, 2007). 76 

Dystocia can lead to increased days open, increased numbers of services, 77 

premature culling and poor calf health, performance and survival (McGuirk et al, 78 

2007; López de Maturana et al, 2007; Lombard et al, 2007; Gaafar et al, 2011; 79 

Barrier et al, 2013). Thus the development of methods to automatically predict the 80 
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onset of parturition and identify problematic calvings is important to facilitate timely 81 

and appropriate interventions to prevent the losses associated with dystocia. 82 

A number of physiological and behavioural changes occur around calving which offer 83 

opportunities to predict the onset of parturition. Characterisation of maternal 84 

hormonal profiles is able to predict calving times with limited accuracy (Shah et al, 85 

2006) and the process is invasive and retrospective. Reductions in body temperature 86 

occur on the day of calving and can be used to predict parturition onset within a 24 87 

hour window, but variations in temperature change between individual animals limit 88 

the predictive power of temperature alone (Saint-Dizier and Chastant-Maillard, 89 

2015). Behavioural indicators, such as lying and standing, eating and rumination 90 

(Kovács, et al, 2016) patterns, social behaviour and tail raising events are known to 91 

change in the 24 hours prior to calving (Huzzey et al, 2005; Miedema et al, 2011a,b; 92 

Jensen, 2012). Advances in animal mounted sensor capable of monitoring these 93 

behaviours provide the opportunity to develop an automated system for prediction of 94 

parturition.  95 

The objectives of this study were to determine if integrating data streams from 96 

accelerometers mounted at two locations on the animal could be used to develop 97 

machine learning algorithms to predict when calf expulsion should be expected to 98 

occur. The novelty of the study lies in the integration of accelerometer data streams 99 

into a machine learning algorithm to predict time to calf expulsion in both beef and 100 

dairy cows.  101 
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Methods 102 

Animals 103 

Two studies were conducted, one with beef cows at the Beef and Sheep Research 104 

Centre at Scotland’s Rural College (SRUC), UK, and one at a commercial dairy farm 105 

in Essex, UK. In the beef trial, a total of 144 pregnant spring-calving cows which 106 

calved between March and June 2017 were monitored. The animals were a mixture 107 

of breeds (51 Limousin sired; 59 Aberdeen Angus sired, 34 Luing), with 78, 54 and 108 

12 calving to the first, second and third artificial insemination (AI) respectively. At the 109 

beginning of the trial the average liveweight was 662 ± 91 kg and the average body 110 

condition score was 2.8 ± 0.3 (using the system described in Lowman et al, 1976). 111 

Cows ranged in age from 2-16 years and parity number from 0-13. Cows were 112 

allocated to one of two group-housed straw-bedded pens prior to calving (Pen 1: 113 

32m x 6.4m housing up to 24 cattle; Pen 2: 27.4m x 6.4m housing up to 20 cattle). 114 

Animals entered the study based on anticipated date of calving, with those calving to 115 

the first AI entering the trial first. Throughout the study, all beef cows were fed a total 116 

mixed ration comprising of (per head/day on a fresh weight basis) whole crop barley 117 

silage (27.7%), grass silage (41.0%), barley straw (25.6%), maize dark grains (5.1%) 118 

and minerals (0.6%).  119 

In the dairy trial, a total of 110 Holstein Friesian dairy cows which calved between 120 

July and October 2017 were monitored. Cows ranged in age from 1-10 years and 121 

parity ranged from 0-6. All dairy cows were served using AI and estimated calving 122 

dates were available from the Cattle Information Service records. Cows were housed 123 

in a 41 cubicle dry-cow shed (30m x 12m) from 14 or more days pre-calving, where 124 

they remained loose housed until showing signs of calving (determined visually by 125 

the farm staff). At which point they were moved to a smaller (6m x 10m) loose straw 126 
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bedded yard for calving and until approximately 24 hours post calving. Cows were 127 

fed a dietary cation-anion balanced total mixed ration which was delivered once a 128 

day at approximately 9am. To allow scraping and bedding up cows were removed 129 

from the cubicle house once a day and held in the adjacent collecting yard (10-130 

11am). 131 

Experimental design and sensors 132 

All cows in both studies were fitted with two sensors, and data collection was started 133 

immediately: 134 

1. Silent Herdsman (SHM) collars (Afimilk Ltd., Israel), neck mounted 135 

accelerometers originally designed to detect oestrus based on cow activity, 136 

rumination and eating patterns (Konka et al, 2014). Data from the collars was 137 

downloaded to a base station in real time and classified into behaviours by 138 

proprietary algorithms (hourly eating and rumination and relative activity per 1.5 139 

hours).  140 

2. Tail mounted tri-axial accelerometers (TTA) (AX3 3-Axis logging accelerometer, 141 

Axivity, Newcastle upon Tyne, UK) measuring acceleration at a frequency of 12.5 142 

Hz. The TTAs have an internal battery which is rechargeable. Data is downloaded 143 

manually to a computer in comma separated values format. Previous work from 144 

SRUC and the University of Edinburgh has characterised tail-raise signatures and 145 

demonstrated that this information may be important to predict time-to-calving during 146 

the immediate pre-calving period (Miedema et al, 2011a). The TTAs were housed in 147 

synthetic pouches and mounted on cow tails using hook and loop straps (Figure 1). 148 

The angle of the tail at any point in time can be determined by calculating the pitch of 149 
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the TTA (Figure 1). An approximation to this is obtained from the magnitude of the 150 

gravitational acceleration measured on the x-axis of the TTA: 151 

𝐴𝑐𝑐𝑥 = 𝑔 sin (𝜃) 152 

where θ is the angle of the TTA orientation with respect to gravity (Figure 1). Using 153 

this approach, the orientation of the TTA was determined for a period of 10 minutes 154 

following attachment, thereafter deviations of more than 20º from this position were 155 

deemed to be when the tail was in a raised position. 156 

Continuous 24 hour video data was collected for the duration of the calving period. 157 

Twenty five dome cameras were mounted above the beef calving pens and footage 158 

recorded continuously using GeoVision software (EZCCTV, Letchworth, UK). In the 159 

dairy study 2 cameras were installed at positions which ensured that there was full 160 

coverage of the calving pen. Shed lights were left on at night to ensure that calving 161 

time could be recorded for animals calving during the night, Videos were manually 162 

reviewed to ascertain the exact time of calf expulsion (calf completely expelled from 163 

the cow) for each cow.  164 

Data Analysis 165 

The SHM collars use proprietary algorithms to convert raw accelerometer data into 166 

minutes per hour spent eating (EAT), minutes per hour spent ruminating (RUM) and 167 

a relative numeric level of activity per 1.5 hours (ACT). Raw TTA data was 168 

expressed as minutes per hour with the tail in a raised position (TAIL).  169 

For the development of the prediction models, sensor variables (TAIL, RUM, EAT 170 

and ACT) were combined with non-sensor variables. The non-sensor variables used 171 

in the beef models were as follows: time of day, parity, breed, weight at beginning of 172 
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trial (kg), body condition score at beginning of trial, age (years) and AI status 173 

(conceived on the first, second or third AI). For dairy cows the variables were: time of 174 

day, parity (multiparous or primiparous), number of lactations and age.  175 

The hour in which a calf was completely expelled from the cow was deemed ‘hour 0’ 176 

for that cow and all previous data points were assigned a value according to number 177 

of hours relative to hour 0. For each sensor variable, only animals which had at least 178 

the 48 hours prior to calf expulsion recorded were included, and all data up to 196 179 

hours (one week) was considered.   180 

The data from individual sensor variables were plotted to visually assess changes in 181 

behaviour in the week prior to calving. The five hours prior to calving was statistically 182 

compared to a control period which was the corresponding five hour period 24 hours 183 

before using a Wilcoxon signed-rank test. The data was then randomly divided into 184 

training and validation data sub-sets (70:30), using the createDataPartition function 185 

in the R package caret (Kuhn, 2018), with no animal allowed to be in both the 186 

training and validation sub-sets.  187 

Random forest (RF) models were developed to predict when an animal was within 5 188 

hours of calving using single variables and then combined variables. Random forest 189 

classifiers are ensemble machine learning algorithms which are considered to be 190 

more accurate than single classifiers, and more robust to noise (Agjee et al, 2018). 191 

Ensemble algorithms construct a set of independent classifier models (decision 192 

trees), with each model having a ‘vote’ on how to classify each new data point. RFs 193 

were developed for each individual sensor variable (TAIL, RUM, EAT and ACT), and 194 

then for multiple sensor variables, and finally - for the best model - hourly time points 195 

leading up to calf expulsion. The algorithm creates i bootstrapped samples from the 196 
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training data sub-set, where i is the number of independent decision trees (ntree). A 197 

decision tree is then fitted to each bootstrap sample. To overcome the unbalanced 198 

nature of the data (fewer target time points than non-target) the bootstrapping, 199 

resampling during parameter tuning and model evaluation were down sampled i.e. if 200 

there were 100 time points of interest then only 100 other data points were included. 201 

Each tree was then tested with the out-of-bag (oob) data points. At each branch in 202 

each decision tree, only a random subset of variables are considered (mtry), this 203 

parameter and ntree were optimised during tuning of the algorithm. All possible 204 

values of mtry were tested and ntree was increased (by 500 trees) until increasing 205 

the number of trees further no longer reduced the model error (i.e. the oob error 206 

stabilised).  207 

The final models were tested on the validation data sub-set. The binary class 208 

variable ‘calving’ and the model predictions (class probabilities) were used to create 209 

Receiver Operator Characteristic (ROC) curves and to estimate the area under the 210 

ROC curve (AUC). Based on the ROC curves, a threshold for the probability that a 211 

cow was within 5 hours of calf expulsion was chosen that resembled the optimum 212 

balance between sensitivity (true positives divided by true positives plus false 213 

negatives) and specificity (true negatives divided by true negatives plus the false 214 

positives). The Matthew’s Correlation Coefficient (MCC) was also calculated. The 215 

MCC is a metric which assesses the performance of a binary classifier and is less 216 

sensitive to imbalanced data sets (such as the test sub-sets in this case) and is 217 

calculated using the following equation: 218 

𝑀𝐶𝐶 =
𝑇𝑃𝑥𝑇𝑁 − 𝐹𝑃𝑥𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 219 
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Where TP = true positive, TN = true negative, FP = false positive and FN = false 220 

negative. These values were derived from the optimum model identified by the ROC 221 

curve. MCC values are between -1 and +1, with +1 being a perfect classifier, 0 being 222 

no better than random and -1 being completely inversed classification. 223 

All data analyses were undertaken in R (version 3.4.1, R core team, 2017) using the 224 

caret (Kuhn, 2018) and pROC (Robin et al, 2011) packages. 225 

Results 226 

Data inclusion 227 

Table 1 gives a summary of the success of data capture for the tail sensors and 228 

SHM collars in the beef and dairy trials, and the reasons for excluding animals from 229 

the data analysis. Supplementary Table 1 shows how the number of animals 230 

included in the analysis changed with hours prior to calving. For the beef trial, a total 231 

of 124 animals were included in the eating/rumination dataset, 112 in the activity 232 

dataset and 75 in the tail sensor dataset. The corresponding numbers for the dairy 233 

animals were 81, 101 and 53, respectively. 234 

Changes in behaviour measured by animal mounted sensors 235 

Tail raising. 236 

Mean time spent with the tail in a raised position per hour in the week prior to calving 237 

was 2.1 ± 0.04 min/hr in beef cows (Figure 2a) and 3.2 ± 0.07 min/hr for dairy cows 238 

(Figure 2b). In the five hours prior to calving time spent with the tail raised was 239 

significantly higher than in the control period for both beef (increase from 4.7 ± 0.80 240 

to 22.8 ± 1.66 min/hr, p < 0.01) and dairy cows (increase from 6.6 ± 1.29 to 26.2 ± 241 

2.48 min/hr, p < 0.01).  242 
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Time spent ruminating. 243 

In the week prior to calving, the mean time spent ruminating by beef cows was 21.9 244 

± 0.12 min/hr (Figure 3a). Time spent ruminating decreased significantly in the five 245 

hours prior to calving compared to the control period (from 23.8 ± 0.67 to 12.0 ± 0.59 246 

min/hr, p < 0.001). For dairy cows the mean time spent ruminating in the week prior 247 

to calving was 16.6 ± 0.10 min/hr (Figure 3b). Time spent ruminating decreased 248 

significantly in the five hours prior to calving when compared to the control period 249 

(from 14.9 ± 0.73 to 8.8 ± 0.73 min/hr, p < 0.001).  250 

Time spent eating. 251 

The mean time spent eating by beef cows was 21.1 ± 0.15 min/hr (Figure 4a) in the 252 

week prior to calving.  During the control period, mean time spent eating was 19.1 ± 253 

0.76 min/hr, which increased significantly in the five hours prior to calving (23.0 ± 254 

0.74 min/hr, p < 0.001.. For dairy cows the mean time spent eating in the week prior 255 

to calving was 19 ± 0.1 min/hr (Figure 4b). The five hours prior to calving was 24 ± 256 

0.9 min/hr, which was significantly higher (p < 0.05) than the control period (22 ± 1.0 257 

min/hr). 258 

Relative activity level. 259 

In the week prior to calving, the mean relative activity by beef cows was 4.2 ± 0.06 260 

(Figure 5a). Relative activity significantly increased compared to the control period in 261 

the five hours prior to calving (from 5.9 ± 0.54 to 13.6 ± 1.12, p < 0.01). For dairy 262 

cows the mean relative activity was 2.9 ± 0.04 in the week prior to calving (Figure 263 

5b). There was also a significant increase in relative activity in the five hours prior to 264 

calving compared to the control period in dairy cows (from 4.3 ± 0.53 to 9.1 ± 0.81). 265 
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Predictive models 266 

The model performance statistics for individual and integrated sensor variables are 267 

shown in Table 2. Note that data in the integrated sensor models containing ACT 268 

had to be aggregated into 3 hour blocks to resolve the differences in resolution 269 

without making the assumption that behaviours were being displayed evenly 270 

throughout the reported time periods. The TAIL and TAIL+RUM+EAT models were 271 

found to be the most robust models in both the beef and dairy cow data sets. The 272 

TAIL model was slightly better at predicting calving within a five hour window for beef 273 

cows (MCC = 0.31) than for dairy cows (MCC = 0.29). The TAIL+RUM+EAT models 274 

were equally as good at predicting calving within a five hour window for beef and 275 

dairy cows (MCC = 0.32 for both models).  276 

Variables recorded by the SHM collars alone (RUM, EAT and ACT) were not good 277 

predictors of onset of parturition, the RUM and EAT variables being the worst 278 

performing in both beef (MCC of 0.13 and 0.15 for RUM and EAT, respectively) and 279 

dairy cows (MCC of 0.12 and 0.09 for RUM and EAT, respectively). Combining these 280 

variables resulted in a poorer performing model (MCC = 0.07), likely due to the lower 281 

resolution of data. 282 

When assessing the relative importance of the sensor variables (calculated by 283 

determining the drop in prediction accuracy after shuffling the values of a given 284 

predictor variable in the oob samples, rendering them random and with no predictive 285 

power – data not shown) within the TAIL+RUM+EAT dairy model, the TAIL variable 286 

was by far the most important. Scaled (0-100, with 0 being redundant and 100 is the 287 

most important) importance for TAIL was 100 in both, with RUM and EAT models 288 

having substantially less influence (scaled importance of 22.1 and 21.7, respectively 289 

for beef cows and 26.2 and 29.1 for dairy cows). 290 
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Predicting time to calving 291 

As TAIL was identified as the most important sensor variable for prediction of 292 

parturition, and as a one sensor system is more desirable than a multiple sensor 293 

system, it was selected to develop models for prediction of discreet time points prior 294 

to calf expulsion. Model parameters and performance metrics are shown for hours 0-295 

12 prior to calving in Table 3. Within the beef cows, the predictive performance of 296 

TAIL increases after four hours prior to calf expulsion (MCC increases from 0.07 at 297 

four hours prior to 0.17 at three hours prior). A similar increase was observed in the 298 

dairy cows (MCC increased from 0.06 four hours prior to calf expulsion to 0.14 at 299 

three hours prior to calf expulsion). 300 

Discussion 301 

Behavioural changes 302 

The changes in rumination behaviour observed in this study are in line with those 303 

found in previous studies. Reductions in time spent ruminating of 30-50% on the day 304 

of calving has been observed in dairy cows (Soriani et al, 2012; Calamari et al, 2014; 305 

Braun et al, 2014; Büchel and Sundrum, 2014; Pahl et al, 2014).  306 

The beef cows displayed an increase in the EAT variable in the hour prior to calf 307 

expulsion and in the hour in which the calf was born which was not observed in the 308 

dairy cows. This is contrary to other studies which report decreases when 309 

measurements were made by visual observation (Miedema et al, 2011a) and by 310 

recording the time the cow spends with its head in a feed bin (Braun et al, 2014; 311 

Büchel and Sundrum, 2014). The hour in which the calf was born includes the whole 312 

hour, regardless of when the cow calved within that hour – e.g. if the cow calved at 313 

quarter past the hour, the next 45 minutes are also included. The apparent observed 314 
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increase in eating may actually be misclassification of licking behaviour, this 315 

behaviour has been shown to peak in the hour proceeding birth of the calf (Jensen, 316 

2012). The same trend was not observed in the dairy cows as their collars were 317 

removed directly after calving. In the hour prior to calf expulsion it is possible that the 318 

cow is displaying ground licking or nesting behaviours (Miedema et al, 2011a) which 319 

are being misclassified as eating by the accelerometer algorithms. 320 

Activity levels are known to increase in cows in the hours prior to calf expulsion when 321 

measured by visual observations (Miedema et al, 2011a,b) and leg mounted 322 

accelerometers (Titler et al, 2015). In this study, neck mounted accelerometers 323 

detected an increase in activity prior to calf expulsion, particularly in the final two 324 

hours, however, Clark et al (2015) did not detect any increase in activity prior to calf 325 

expulsion in dairy cows using similar neck mounted accelerometers. As different 326 

animal mounted sensors have different algorithms to define behaviours, and have 327 

undergone different validation exercises it may be expected that there will be 328 

substantial differences in behavioural measurements between them. 329 

An increase in tail raising behaviour, particularly in the two hours prior to calving has 330 

previously been observed in dairy cows (Miedema et al, 2011a,b; Jensen, 2012). 331 

The data capture from the tail sensors was lower than would be practical for a 332 

commercial system. There were two related reasons for this: 1) the sensors were 333 

designed for data gathering purposes and are not sufficiently robust enough for 334 

commercial deployment.  2) Some sensor data could not be processed into tail raise 335 

events as the orientation of the accelerometer could not be determined. Robust 336 

housing for the accelerometer would need to be engineered before this system could 337 

be considered for commercialisation. 338 
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There are no studies which use animal mounted sensors to detect changes in 339 

rumination time, eating time, relative activity and tail raising prior to calf expulsion in 340 

suckler beef cows. This study has shown that patterns of behaviours leading up to 341 

calf expulsion are very similar in suckler beef and dairy cows. 342 

Predictive models 343 

Interest in developing real-time predictive models to alert farmers to when cows will 344 

calve using animal mounted sensors is increasing. The majority of published studies 345 

using sensors to monitor various behaviours have been on dairy cows. Some studies 346 

simply use threshold changes in behaviours to define the onset of parturition. Titler 347 

et al (2015) were able to predict parturition on average 6 hours in advance by a 50% 348 

increase in activity. Krieger et al (2018) used threshold values for frequency and 349 

duration of tail raise events to predict parturition in five cows and detected calving 350 

between 6 and 121 minutes prior to expulsion of the calf. In reality, the results of 351 

Krieger et al (2018) are similar to those found here, where increases in predictive 352 

accuracy of algorithms were observed one to two hours prior to calf expulsion in 353 

hour-by-hour models. The rationale behind exploring the use of a more complex 354 

algorithm than simple threshold algorithms was to allow variables which are risk 355 

factors for dystocia (e.g. age, parity) to be included in the model.   356 

A variety of multi-sensor systems have been used to integrate data streams 357 

monitoring different behaviours. Rutten et al (2017) achieved a very low false 358 

positive rate of 1% within three hours of calf expulsion using two sensors to measure 359 

activity level, rumination time, feeding time and temperature; however the sensitivity 360 

was only 42.4%. Borchers et al (2017) were able to predict parturition eight hours 361 

prior to calf expulsion with a sensitivity of 82.8% and a specificity of 80.4% using two 362 

sensors (neck mounted for rumination time and leg mounted for time spent standing 363 
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or lying and step count). Ouellet et al (2016) achieved sensitivity of 77% and 364 

specificity of 77% within a 24 hour window using three sensors to record four 365 

variables (vaginal temperature, rumination time, lying time and lying bouts). In the 366 

present study, similar results were achieved with a single sensor (TTA: sensitivity = 367 

78.6%, specificity = 83.5% for dairy cows).  368 

Conclusions 369 

In this study it was possible to predict when beef or dairy cows were within five hours 370 

of calf expulsion using animal mounted technologies. Of the variables measured by 371 

the sensors used in this study, time spent with the tail in a raised position was found 372 

to be the best predictor of parturition, and had optimal predictive power at two hours 373 

prior to calf expulsion.  374 
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Table 1: Success of data recording (robust data collected) for variables collected 496 

using neck mounted accelerometers (Silent Herdsman collars): time spent eating, 497 

time spent ruminating and relative activity level, and tail mounted accelerometers 498 

(tail raise) on beef and dairy cows 499 

 
Beef Dairy 

 
Eating / 

Rumination 
Activity 

Tail 
raise 

Eating / 
Rumination 

Activity 
Tail 
raise 

Total animals 144 144 144 110 110 110 

Successful 
recording 

137 128 93 85 103 55 

Not attached - - 3 - - 2 

No calving time 9 9 9 - - - 

Less than 48 
hours 

4 15 3 4 2 0 

Animals in 
analysis 

124 111 75 81 101 53 

 500 

  501 
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Table 2: Model parameter tuning and performance statistics for single and combined 502 

sensor variable random forest models to predict calving in beef and dairy cows. mtry 503 

= number of variables used at each split in each independent decision tree, ntree = 504 

number of independent decision trees oob error = out of bag error, AUC = area 505 

under the curve, CI = confidence interval, Se = sensitivity, Sp = specificity, MCC = 506 

Matthew’s Correlation Coefficient, TAIL = number of tail raise events per hour, EAT = 507 

time spent eating per hour (minutes), RUM = time spent ruminating per hour 508 

(minutes), ACT = relative level of activity per 1.5 hours (minutes). 509 

 
mtry ntree 

obb 
error 

AUC (95% CI) Se (%) Sp (%) MCC 

Beef               

TAIL 3 1000 0.187 86.7 (83.1, 90.4) 76.1 83.3 0.31 

RUM 4 2500 0.376 69.5 (65.1, 73.9) 69.6 62.3 0.13 

EAT 4 2500 0.386 71.7 (67.5, 75.9) 63.8 70.2 0.15 

ACT1 3 2500 0.296 78.1 (73.8, 82.4) 70.9 71.5 0.18 

TAIL+RUM+EAT 2 2500 0.187 86.7 (83.1, 90.3) 75.4 84.6 0.32 

RUM+EAT+ACT2 5 2500 0.526 46.7 (55.3, 62.5) 62.5 55.3 0.07 

TAIL+RUM+EAT+ACT2 6 1500 0.526 72.9 (60.5, 85.3) 81.3 69.7 0.22 

Dairy        

TAIL 2 2000 0.267 87.9 (81.5, 90.1) 78.6 83.5 0.29 

RUM 1 1000 0.491 64.0 (58.5, 69.5) 69.8 59.3 0.12 

EAT 3 500 0.463 62.4 (56.4, 68.5) 59.3 61.7 0.09 

ACT1 5 2000 0.421 68.2 (63.7, 72.7) 66.7 62.3 0.11 

TAIL+RUM+EAT 3 2000 0.226 85.2 (80.5, 89.8) 76.7 85.1 0.32 

RUM+EAT+ACT2 4 1500 0.345 51.4 (68.8, 75.0) 75 68.8 0.18 

TAIL+RUM+EAT+ACT2 5 1000 0.242 86.9 (78.8, 95.1) 79.2 81.3 0.3 

 510 

1 ACT models have a 1.5 hour time step due to the resolution of data collection for 511 

this sensor variable. 512 

2 Combined models containing ACT have a 3 hour time step to resolve differences in 513 

the resolution of data collection between ACT and other sensor variables. 514 

515 



25 
 

Table 3: Model parameter tuning and performance statistics for random forest 516 

models using number of tail raise events to predict parturition at discreet time points 517 

prior to calf expulsion in beef and dairy cows. Mtry = number of variables used at 518 

each split in each tree, ntree = number of independent decision trees, oob error = out 519 

of bag error, AUC = area under the curve, Se = sensitivity, Sp = specificity, MCC = 520 

Matthew’s Correlation Coefficient 521 

Hours 
prior to 

calf 
expulsion 

mtry ntree 
oob 
error 

AUC 
Se  
(%) 

Sp  
(%) 

MCC 

Beef 
       

0 6 2000 0.14 88.5 (79.9, 97.1) 79.2 93.3 0.25 

1 8 500 0.11 89.8 (80.0, 99.6) 90.9 90.9 0.23 

2 6 2000 0.23 95.4 (92.2, 98.6) 91.3 93.5 0.29 

3 6 1000 0.25 84.1 (74.6, 93.7) 78.3 87.0 0.17 

4 8 2500 0.32 59.2 (45.4, 73.1) 47.8 82.2 0.07 

5 8 1000 0.54 47.8 (35.7, 59.9) 52.2 53.9 0.01 

6 6 2000 0.51 56.4 (44.9, 67.9) 53.1 70.5 0.05 

7 8 1500 0.57 57.6 (44.1, 71.0) 68.4 60.8 0.05 

8 7 1500 0.59 53.8 (40.6, 67.1) 57.9 58.1 0.03 

9 7 2500 0.52 54.2 (43.1, 65.3) 57.7 51.1 0.02 

10 8 500 0.44 63.4 (50.8, 69.7) 63.2 64.2 0.05 

11 6 2000 0.64 59.5 (49.3, 69.7) 62.5 56.4 0.03 

12 8 2500 0.69 65.3 (52.1, 78.5) 55.6 66.5 0.04 

Dairy 
       

0 5 500 0.21 88.2 (71.9, 100) 87.5 89.7 0.16 

1 5 1500 0.13 93.2 (88.5, 97.9) 81.3 89.7 0.20 

2 5 2500 0.34 92.0 (86.0, 98.0) 86.7 92.4 0.25 

3 4 1500 0.31 85.4 (75.5, 95.3) 70.0 90.3 0.14 

4 2 1500 0.59 68.3 (48.6, 87.9) 88.9 54.1 0.06 

5 3 1000 0.50 56.4 (38.2, 74.7) 58.3 61.4 0.03 

6 5 1500 0.58 65.5 (51.8, 79.1) 80.0 59.0 0.06 

7 1 2000 0.68 56.9 (43.7, 70.0) 50.0 61.2 0.02 

8 5 500 0.83 54.5 (38.6, 70.4) 61.1 55.6 0.03 

9 5 500 0.60 58.8 (41.8, 75.8) 71.4 54.1 0.04 

10 5 500 0.48 57.5 (42.3, 72.8) 47.4 69.3 0.04 

11 5 1500 0.42 52.7 (38.0, 67.4) 71.4 41.4 0.02 

12 5 1000 0.56 50.2 (34.6, 65.9) 72.7 40.2 0.02 

 522 

 523 
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 524 

Figure 1: Tail mounted tri-axial accelerometer (TTA) attachment to cow tail and 525 

orientation 526 

 527 

Figure 2: Average time spent with the tail in a raised position (minutes per hour) one 528 

week prior to calf expulsion for a) beef and b) dairy cows measured using tail 529 

mounted accelerometers. Standard errors are given by vertical bars. 530 
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 531 

Figure 3: Average time spent ruminating (minutes per hour) one week prior to calf 532 

expulsion for a) beef and b) dairy cows measured by neck mounted accelerometers 533 

(Silent Herdsman collars). Standard errors are given by vertical bars. 534 

 535 

Figure 4: Average time spent eating (minutes per hour) one week prior to calf 536 

expulsion for a) beef and b) dairy cows measured by neck mounted accelerometers 537 

(Silent Herdsman collars). Standard errors are given by vertical bars. 538 

 539 
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Figure 5: Average relative activity (per hour) one week prior to calf expulsion for a) 540 

beef and b) dairy cows measured by neck mounted accelerometers (Silent 541 

Herdsman collars). Standard errors are given by vertical bars. 542 


